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A. Obijectives foreseen/achieved
The 1* Stage of the project — The development of the theoretical framework which allows the implementation of

the modern control solutions — carried out during October - December 2018 and continued in 2019 has been fulfilled
and is grouped in the form of the following activities:

Act 1.1 — Obtaining current theoretical knowledge regarding observers. To accomplish this activity the analysis of
current theoretical research — state-of-the-art on theoretical research — and the possibilities of improving modern
control solutions were considered.

Luenberger (Luenberger, 1966) was the first to introduce and solve the problem of designing observers for
linear control systems. Thau (Thau, 1973) was first to propose one of the central problems in control systems
literature, the problem of designing observers for nonlinear control systems. Many methods of process control use
the state reaction principle. In most cases, the only measurements available to the system are the input and output
measurements, which is why it is necessary from this information to build the state model chosen to develop the
command. A state constructor (Dorf si Bishop, 2005; Preitl si Precup, 2008; Preitl et al., 2009) is a system having as
input the inputs and outputs of the real process, and as output an estimate of the state of this process. In the
hypothesis of linearity of the process model, the basic structure of the estimator is always the same, but its
realization will depend on the chosen context: continuous or discreet, deterministic or stochastic. If the model is
deterministic, the state constructor will be called an observer (or estimator). If the model is a stochastic type, then
the constructor will be called a filter. The estimation problem requires the construction, for a deterministic model of
the process, of a system defined by its state equation, for which the output provides an estimate of the real state of
the process. This estimate implies an error that must tend to zero; when this property is satisfied, the estimator or
observer is called asymptotic (Dorf and Bishop, 2005; Preitl and Precup, 2008; Preitl et al., 2009). An observer is very
useful for implementing feedback stabilization or feedback regulation of nonlinear control systems due to the fact
that it is essentially an estimator for the state of the system. The states estimation problem is of important strategic
significance for the process of controlling and monitoring of many technological processes. In order to control and
optimize a process, knowing some physical state variables provides useful information. This is the case of many
widely diffused process control strategies. Therefore by including an appropriate state estimator, the difficulty
caused by the presence of unknown states can be solved. For this reason, the development of suitable algorithms to
perform the estimation has been the focus of many researchers attention and for this purpose, in order to estimate
state variables from the available measurements, several techniques have been developed and introduced. Over the
past three decades there has been significant research done on the nonlinear observer design problem. Depending
on the mathematical structure of the process model, there is a wide variety of possible estimators that can be used
(Soroush, 1997; Mouyon, 1997; Garcia et al,, 2000; Aghannan si Rouchon, 2003; Kinsey and Whitcomb, 2007; Ghanes
et al.,, 2013; Magnis and Petit, 2016).

The filtering process aims to determine the estimation of system variables when the environment in which
the process takes place presents random perturbations. Two points of view can be used to address this issue: the
first one is Wiener's who uses the frequency description and the second one is Kalman's using the temporal
description. In both cases, an optimal system (filter) is determined in order to minimize the error variation between
the real variable and its estimation (Wiener, 1949; Boulfelfel et al., 1994; Brown and Hwang, 1996). The probabilistic
estimation method that is the most well-known and commonly used for linear systems is the Kalman filter (KF) and
for the nonlinear systems its extension, the Extended Kalman Filter (EKF). Although the KF in the case of highly
nonlinear processes becomes unstable and has severe limitations, when employved for linear processes provides an
efficient method for estimating the states and thus it also minimizes the mean of the squared error. Even if a precise
model of the considered system is unknown the filter supports the estimation of past, present and future states
(Biagiola and Solsona, 2006; Lendek et al., 2008; Beyhan et al.,, 2013; Habibullah and Lu, 2015). Regarding the
nonlinear estimation techniques that have been developed until now, the EKF among other nonlinear ones based on
linearization techniques is one of the most widely diffused observers. For the EKF approach, in order to obtain the
estimator gain a Riccati equation must be solved. Even though the EKF could be a good choice when the assumptions
are satisfied, in order to have a good trade-off between the measurement noise and the input uncertainty, it can still
fail in many cases. Because of the fact that the noise model is often unknown and it can only be assumed, wrong
noise assumptions can lead to biased or even divergent estimates. The purpose of the observer is to process these
measurements and any available informations regarding the initial state of the system and to offer an estimate of the
current state of the system. The obtained estimation should improve with additional measurements and, ideally, in
the absence of noise, it should converge to the true state value. The advantage of using EKF is the lack of stationary
error at low speeds. The disadvantage of the method arises from the complexity and large volume of computing, for
the implementation the use of processors with high computing power being necessary. Another drawback is the
need to fully know the noise sources in the system in order to determine the covariance matrices. For most
applications the EFK is still the approach that is more practical and offers the most robustness (Brown and Hwang,
1996; Simon, 2006; Biagiola and Solsona, 2006; Lendek et al., 2008; Beyhan et a |., 2013; Habibullah and Lu, 2015).

The estimation of states and of the possible uncertain parameters, based on a dynamic system model and a
sequence of noisy measurements, is required by a wide range of problems in decision making, control, and monitoring.
The design of an observer for a nonlinear system requires the description of the system in a state-space form. There is
no generic method yet developed for the design of an observer valid for all nonlinear system types. From this point of



view fuzzy control is more pragmatic due to the specific decision-making mode in the command development. To this
end, a rather qualitative linguistic characterization of the situation in which the process evolves and of the intervention
decision is developed; this decision is then transposed into an adequate quantitative intervention (Preitl si Precup,
2008; Preitl et al., 2009). Any nonlinear system can be approximated on a compact set with an arbitrary accuracy by
the generic nonlinear state-space model that is provided by Takagi-Sugeno (TS) fuzzy systems (Takagi and Sugeno,
1985). The interest of using the approach based on the representation of nonlinear systems through TS models
(Takagi and Sugeno, 1985; Taniguchi et al., 2001; Tanaka and Wang, 2001) is built on the fact that once the TS fuzzy
models are obtained, some analysis and design tools developed in the theory of linear systems (Huang, 2005; Lee et
al., 2013; Li et al., 2014) which facilitates the observation and/or synthesis of the controller for complex nonlinear
systems can be used. However, many papers have been done to investigate the problem of nonlinear observers’
synthesis and its application to the dynamic systems described by fuzzy TS systems. In (Tanaka et al., 1998, Tanaka and
Wang, 2001, Bergsten et al., 2002, Ichalal et al., 2007, Lendek et al., 2010), the problem of the TS fuzzy observer for
explicit dynamic models in continuous-time and in discrete-time has been addressed. In implicit cases, there are more
continuous-time papers (Taniguchi et al., 2000, Marx et al., 2007, Ilhem et al., 2012; Essabre et al., 2014; Soulami et al.,
2015) than for discrete-time (Wang et al.,, 2012; Estrada-Manzo et al., 2014). Moreover, many other works regarding
the explicit design of the observer, called the Proportional Integral Observer, have also been proposed for the TS
implicit models. These results are based on the singular value decomposition approach and on a generalized inverse
matrix and consider the output matrix without nonlinear terms (Marx et al., 2007; Hamdi et al., 2013). The analysis
and design for a general nonlinear system represented by a fuzzy model becomes much easier because there are well-
established methods and algorithms that can be used to design fuzzy observers. For TS fuzzy systems there have been
several types of observers developed, such as Thau-Luenberger observers (Beyhan et al., 2013; Tanaka et al., 1998),
reduced order observers (Beyhan et al., 2013; Bergsten et al., 2002) and sliding mode observers (Beyhan et al., 2013;
Palm si Bergsten, 2000). The observers design methods generally lead to a linear matrix inequalities (LMls) feasibility
problem. The stability analysis for a large number of rules eventually becomes unsolvable because the system
complexity grows exponentially with the number of antecedents (Lam et al., 2013). By employing observers, the non-
measurable states can be estimated, analyzed, and used for the control of nonlinear systems.

Variable Structure Systems (VSS) are one of the most promising techniques for controlling electrical drives,
due to good robustness and performance in case of parametric variations, of perturbations and load variations,
respectively due to the compensation of the nonlinearities of the controlled process and their simple implementation.
The primary feature that distinguishes the sliding mode systems as an independent class of automatic control systems
is the fact that during transient processes the system structure changes. In VSS theory, the most attention is paid to
systems with sliding modes. They are based on a specific type of control law that causes a sliding mode control or
sliding mode regime in the system. Sliding mode observers use the remarkable VSS properties and are successfully
integrated into servosystems. These observers use the equivalent command to estimate the equivalent disturbance. In
general, their structures are closely related to the mathematical models used in the controlled process (Spurgeon,
2008; Mercorelli, 2015; Apaza-Perez et al., 2016). These have the ability to minimize the error between the measured
process output and the output of the observer that ensures that the observer produces a set of state estimates that
are precisely proportional with the actual output of the process. The sliding mode observer design method consists in
determining a switching gain. One restriction is the fact that in order to achieve the estimation, the outputs have to lie
on specified sliding surface. In addition, performance is rarely guaranteed, particularly when the outputs are corrupted
with noise. Similarly to a KF, the sliding mode observers have attractive noise resilience properties. In comparison to
linear observers, the principle advantage that the sliding-mode observers have is that they are insensitive to the
unknown inputs while in sliding, and additionally they can be utilized in order to reconstruct unknown inputs which
could be a combination of system disturbances, faults or nonlinearities (Spurgeon, 2008; Mercorelli, 2015; Apaza-Perez
et al., 2016).

The construction of nonlinear observers still provides an open research field because advances in this area
often face many obstacles, such as, for example, the very restrictive conditions that have to be satisfied, uncertainty
in the performance and robustness and/or poor estimation results. Depending on what type of observer is being
used there are other limitations, for example, in case of Luenberger-based observers, design is always based on the
perfect knowledge of the system parameters; in case of finite-dimensional system observers, the convergence factor
depends strongly on the operating conditions and for artificial intelligence-based observers it may be difficult and
time consuming for online implementation and also, the artificial intelligence elements must first be adapted to the
system. The control systems should benefit from the advantages of the continued analytical development and
implementation of dynamic model-based nonlinear observers that promise to improve the performance of different
types of mechatronics systems.

The potential impact to the scientific field may be significant because through new concepts and employed
approaches, a new way for the use of highly advanced control designs in mechatronics applications is open, which is
very useful for implementing feedback stabilization or feedback regulation of nonlinear control systems. It is clear
that nonlinear observer design is still an open area for research, efforts being made to broaden and adapt the
proposed technigues in order to widen the classes of nonlinear systems to which they may apply.

The potential impact of the project in the scientific, social, economic or cultural environment is
straightforward since the investigated topics can lead to automated tools for controller design and tuning. Although
there is a wide range of possibilities for creating new themes for state-of-the-art research, noteworthy is also the
impact in the socio-economic environment with directly applicative directions. In the project all mechatronics
applications tackled are interdisciplinary and multidisciplinary themselves, with special focus on those applicable
cost-effective training systems in the fields of robotics, automation and process control.

Act 1.2 - Studying the practical applications of various types of observers. To accomplish this activity, the realization
and classification of observers was studied with focus on mechatronic systems.

Mechatronics systems have experienced a rapid and complex multidisciplinary development as a result of
advances in various application areas such as (Bishop, 2007; Gutiérrez-Carvajal et al., 2016; Isermann, 2005): expert



systems, automotive engineering, robotics and automation, systems structural dynamics, control systems,
servomechanics, numerical computing systems based on highly integrated microelectronics, consumer products,
medical imaging systems, mobile applications, integrated and computer-aided manufacturing systems,
transportation systems and vehicles. Mechatronics systems are successfully used in many industrial and non-
industrial applications because of their simple and robust structure. By constantly evolving, these systems exhibit
increasing performance ensuring functional and applicative versatility, intelligence and flexibility. These features are
also provided by the control system which has to be able to adapt to external conditions at all times and to provide
the necessary informations to the hierarchical control (Isermann, 2005; Koch et al., 2006; Hehenberger et al., 2006;
Pabst, 2006; Bishop, 2007; Dragos, 2011).

The design of control systems is important because of the very good performance specifications imposed in
various fields. The specifications become more restrictive if several operating conditions of the processes are
involved as the variable parameters (for example, in the case of speed and position control besides the variable
moment of inertia situations, the variable reference input, correlated with various particular operating conditions,
additional operating conditions may occur, such as oscillations that apear on the mechanical side). These problems
can be solved in two ways: by developing advanced nonlinear models or by implementing a robust control based on
state observers technique. The implementation of the second solution in servosystems leads to high system
performances. In this context, the development of advanced control solutions is a relatively difficult problem which
requires a detailed preliminary study of the process, particularly the parameters variability and of its structural
properties. As a continuation of previous research, in this project (PD 164/10.10.2018) the approach oriented on the
analysis, synthesis, modeling and development of modern control solutions, such as nonlinear observers dedicated to
certain mechatronics applications is proposed. Two types of observers can be used: linear and nonlinear. From the
category of linear observers, the most common are full-order observers known as the Luenberger type observers
and reduced-order observers. Among the nonlinear ones we mention: extended Kalman filters, sliding mode
observers, fuzzy and neural network observers (Luenberger, 1966; Ackermann, 1972; Friedland, 1996; Gajic si Lelic,
1996; Stefani et al., 2002; Preitl et al., 2009).

Linear and nonlinear observers intended for mechatronics applications within the project

The main research within this project is oriented towards the development of new control solutions
dedicated to speed and position control of four mechatronics applications:
1. Electric drive system with DC motor (EDS-DC)

The application considered in this paper is a simple mechanism, a mechatronic system that does not require
complex hardware and also exhibits attractive features such as high efficiency, low manufacturing cost, simple
construction and operation and linear torque-speed characteristics. In the context of the quality requirements
expressed as performance specifications imposed to the operation of EDSs, there are currently several problems, two
of which are highlighted: one is to make the control systems robust to variations in parameters and under the
influence of disturbances and the other one consists in making the control system adaptable to such changes. The
main objectives of these systems are to provide the most accurate following of the reference, smallest possible
settling time, reduced overshoot, zero adjustment error (as low as possible) in relation to certain types of references
and disturbances and thereby a static character of the system. Given these objectives, the analysis of the state-of-
the-art of control theory and applications related to EDSs-DC shows that the solution which involves implementation
of robust control techniques based on observers leads to high system performance. For this mechatronics application
were proposed and developed, from the category of linear observers: an extended Luenberger state observer (ELSO)
and a Kalman filter observer (KFO) and from the nonlinear category: an extended Kalman filter observer (EKFO) and
a sliding mode observer (SMQ). The details are presented in the study from stage 2 and in the published paper
(Szedlak-Stinean et al., 2022a).

2. The electric drive system with time-varying inputs with a brushless motor (EDS-TVI-BLDC)

The electric drive systems with Brushless Direct Current (BLDC) motors (BLDC drives) have experienced a
fast and complex multidisciplinary development as a result of advances in various fields such as (Yedamale, 2003;
Hansson, 2004; Baldursson, 2005; Nasar and Boldea, 2005): power electronics, modern automated control
techniques, powering electric vehicles (e.g., cars, electric bicycles, electric scooters), numerical computing systems
based on microelectronics with a high degree of integration, industrial automation, medical equipments and robotic
instrumentation (e.g., improving sleep for apnea suffers, providing mobile breathing assistance, preventing blood
clots in hospitalized patients), etc. In control applications which involve electric drives, it is often necessary to
estimate derivatives of measurable states, for example, estimating the speed (w) and acceleration (&) from position
information (9,), which is why, for this mechatronics application were proposed and developed four linear observers
- (1), (2), (3) and (4) — and one nonlinear observer (5): (1) an observer of m'" order derivatives with the filtration
technique (OFT); (2) an extended Luenberger state observer with &, and M. as inputs (ELSO+Me); (3) an extended
Luenberger state observer having only the &, as input (ELSO-Me); (4) a Kalman filter observer (KFO) and (5) a
sliding mode observer (SMO). The details are presented in the study from stage 2 and in the published paper
(Szedlak-Stinean et al., 2019a).

3. The electric drive system which wraps a strip with constant linear velocity on a drum - electric drive system with
variable parameters (SWS)

For this mechatronics application, two nonlinear estimation approaches were proposed and developed,
namely based on extended Kalman filter (EKF) and a Takagi-Sugeno Fuzzy Observer with 32 rules (TSFO-32), for a
strip winding system (SWS) characterized by variable reference input, variable moment of inertia with constant
increasing trend and variable parameters. The SWS is a complex and nonlinear mechatronic system viewed as a
controlled process, which wraps a strip with constant linear velocity on a drum and the variable radius modifies both
the angular velocity and the moment of inertia. The motivation of using EKF is the zero stationary error at low
speeds. The motivation of using TSFO-32 is that once the Takagi-Sugeno fuzzy models are obtained, various analysis
and design tools initially developed for linear systems, which facilitate the observation and/or synthesis of the
controller for complex nonlinear systems, can be adapted appropriately and used in these nonlinear systems.



Therefore, these tools simplify the design as well-established approaches and algorithms are available. The fuzzy
control system stability and observer design conditions are derived and expressed as linear matrix inequalities. The
efficiency of TSFO-32 is discussed in this project in terms of setting a certain convergence rate. The details are
presented in the study from stage 2 and in a journal accepted to be published (Szedlak-Stinean et al., 2022b).

4. The laboratory equipment - Model 220 Industrial Plant Emulator (M220IPE)

The laboratory application — Model 220 Industrial Plant Emulator (M220IPE) — is a complex, nonlinear
equipment, ideal for studying automatic control solutions dedicated to the control of modern industrial equipment,
such as: transmission shafts, conveyors, rotary tables, machine tools and machines of automated assembly (ECP,
2010; Szedlak-Stinean et al., 2016; Szedlak-Stinean et al., 2017). The development of suitable algorithms to perform
the estimation has been the focus of many researchers’ attention and for this purpose, in order to estimate state
variables from the available measurements, several techniques have been developed and introduced (Brown and
Hwang, 1996; Aghannan and Rouchon, 2003; Marx et al., 2007; Lendek et al., 2008; Spurgeon, 2008; Magnis and
Petit, 2016). In this context, from the category of discrete-time linear observers were proposed and developed: an
extended Luenberger state observer (ELSO) and a Kalman filter observer (KFO), and from the category of
continuous-time linear observers was proposed and developed a controller that can be considered as composed of
three subsystems: a subsystem that provides the desired output and from the reference value a feed-forward
signal, an observer and a feedback derived from the estimated states. The interesting structure of the controller
allows it to be applied for a wide range of design methods. The defining feature of a state feedback controller and an
observer have is the complexity of the controlled system that determines controller’s complexity. As such a system
model is actually contained by the controller. Thereby the internal model principle that prescribes that an internal
model of the controlled system should be contained in the controller is in this project exemplified. From the category
of discrete-time nonlinear observers were proposed and developed: an extended Kalman filter observer (EKFO) and
a sliding mode observer (SMO). The details are presented in the study from stage 7 and in two papers: in a published
paper (Szedlak-Stinean et al., 2019b) and in a paper accepted to be published (Szedlak-Stinean et al., 2022c).

The 2" stage of the project — The design and implementation of the proposed modern control solutions ~ pursued

within the project in 2019 (January - September 2019) and in 2022 (January — April 2022) has been completed and is
grouped in the form of the following activity:

Act 2.1 - Development of observers through simulations (digital / simulation results). To carry out this activity, the
analysis of theoretical research and the classification of observers specific to mechatronics systems from stage 1,
were considered.
1. Electric drive system with DC motor (EDS-DC)

The behavior of the EDS-DC is expressed by the following equations (lsermann, 2005; Nasar and Boldea,
2005; Preitl si Precup, 2008):
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where: i, Us = the armature current and voltage [A, V], u. — the control voltage [V], To=Le/Ra, La, Ro — the electrical
parameters [s, H, 0,], w = the angular speed [rad/s], k., km, ks = the electromagnetic coefficients [V/rad/s, N-m/A,
N-m/s], ke — the actuator gain [V/V], J - the moment of inertia [kg:m?], and m, — the load torque [N-m]. The
characteristic parameters related to EDS-DC used in the informational characterization of the controlled process are:
(i) inputs: u. — the control voltage and m; — the load torque, (ii) outputs: w — the angular speed and i, — the armature
current, and (iii) state variables: {w, is, UJ}.

The state-space MM of the EDS with DC motor is obtained by inserting the state variables x(t) = i (t), x:(t) =
w(t), xs(t) = ua(t):
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In Fig. 1, the block diagram corresponding to the DC electric drive system is shown.



Fig. 1. Block diagram of the EDS-DC

The evaluation of an observer design success is based on its ability to estimate the difficult-to-measure
states with acceptable convergence rates and with approximately zero estimation errors. To achieve a comparative
study on armature current and angular speed control performance, the four design proposals (observers) presented
below will be taken into consideration. The design will use the dynamic model shown in (2).

1.1. Extended Luenberger state observer (ELSO)
A solution to compute the state estimates j-] s ,i-l(t) and x,(z) is to use two ELSOs having as

predictive correction terms the armature current error Ax,(z)= x,(#)—X,(#) and the angular speed
error Ax, (1) = x, () — X, (¢) . For estimating the armature current, a gain matrix L = []“ﬂ Lo L, ]T eMN is

used (here, T represent the matrix transposition) and the dynamic model of ELSO is (Luenberger, 1966; Preitl si Precup,
2008; Szedlak-Stinean et al., 2019a):
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For estimating the angular speed, a gain matrix L= [lim b, liru] €N is used and the dynamic

model of ELSO is (Luenberger, 1966; Preitl si Precup, 2008; Szedlak-Stinean et al., 2019a):
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In both cases A& ‘.)?3"'3, Be ¥ CeR™ are the continuous-time ELSO matrices and for m; a step signal is

utilized. The observer gain matrix L is calculated in terms of the pole placement method, considering the pair (A, C)
observable.
1.2. Kalman filter observer (KFO)

KFO is the most popular and often utilized observer for linear systems and it offers a good approach for
estimating the states while minimizing the mean square error (Lendek et al.,, 2008; Habibullah and Lu, 2015; Szedlak-
Stinean et al., 2019a; Brown and Hwang, 1996; KF, 2022). The dynamical state-space model is defined by (Szedlak-
Stinean et al., 2019a):

X(1) = Ax(1) + Bu(t) + Gw(t),
(1) = Cx(t) + Du(t) + Hw(t) + (1),

where: x — the state vector, u —the input, v, w — the white measurement noise and white process noise, Q, R, N —the
process covariance, the measurement covariance and noise cross covariance and the elements of matrices A, B, C
and D (here D=0) are gained using (2). The KFO constructs the error covariance as stated by:

(5)
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Taking this into consideration, the equations of the KFO are:
x(1) = Ax(t) + Bu(t) + L(y(t) — Cx(¢) = Du(1)),
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As far as the KFO is concerned, in order to obtain the filter gain, a Riccati equation must be solved. The filter
gain L, R, and N, are according to:

L=(PC"+N,)R", @)
R =R+HN+N"H" + HOH" /N, = G(OH” + N).

1.3, Extended Kalman filter observer (EKFO)

EKFO is the nonlinear version of KFO, and it linearizes around an estimate of the current mean and
covariance. It is deemed to be a relevant standard for well-defined transition models, for nonlinear estimation, global
positioning systems and navigation systems (Julier and Uhlmann, 2004). Because most engineering systems are
nonlinear, it was attempted to use the EKFO for functions approximated by using a linearization process.

The dynamical model is represented by the equations (Beyhan et al., 2013; Simon, 2006; EKF, 2022):
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(9)

where: x, u, w, v, Q and R are exactly the same vectors, variables and parameters as in the case of KFO, f — a
function utilized for calculating the predicted state from the previous estimate and h— a function utilized for
calculating the predicted measurement from the predicted state. The EKFO predict-update equations are (Beyhan et
al., 2013; Simon, 2006):
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where: P — the error covariance matrix, K — the Kalman gain matrix, F, H — the state transition and the state
observation matrices. The states of EKFO are revised employing the error ¢(¢) = v(r) - h(x(¢)) and also the K

matrix.
1.4. sliding mode observer (SMO)
These observers have the ability to minimize the error between the measured process output and the
output of the observer that guarantees that the observer offers a set of state estimates that are exactly proportional
to the actual output of the process. For SMO design, the dynamic model given in (2) will be utilized, knowing that the

matrix dimensions are 4 R, Be R"™™, CeR”, p=m. In this context, the following change of

coordinatesx— Tz, 7. =[N’ C|', was considered, where det(T.)#0 and the submatrix N_eR"“? covers the null space
& ¢ 8 ¢

of C (Lendek et al., 2008; Szedlak-Stinean et al., 2019a; Shtessel et al., 2014). The matrices TAT?, T.B and CT.! are
presented in (11).
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Knowing that T.z=(z )", the dynamical model of the SMO is (Lendek et al., 2008; Szedlak-Stinean et al.,
2019a; Shtessel et al., 2014):
Z=A,z+A,y+Bu+Lv,, (12)
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In order to reduce the sliding motion, the error system defined in (13) provides the
relation &, = (A4, + LA, Je. , which reliant on L, describes a stable system, so e, —> 0 and therefore ? -» .

The validation of the control approaches is done by numerical simulation scenarios. Two simulation scenarios
were taken into consideration: (i) a step reference input and (ii) a staircase reference input. The digital simulation
results are given in Fig. 2 and Fig. 3.
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Fig. 1. Digital results for EDS-DC (step reference input): (a) angular speed versus time, (b) armature current versus time
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Fig. 2. Digital results for EDS-DC (staircase reference input): (a) angular speed verszjs time, (b) armature current versus time

Taking into consideration the graphics presented in Fig. 2 and Fig. 3, the following set of conclusions is
formulated: (i) the best performances have been obtained by the KFO and by the ELSO due to the fact that they are
linear observers and the EDS-DC is a linear system; (ii) the ELSO is less efficient than KFO due to the fact that the
process parameters influence the parameters of the observer gain; (iii) the SMO provides better performance than
the EKFO due to the fact that similarly to KFO has attractive noise resilience properties and also is insensitive to
unknown inputs while in sliding; (iv) the proposed observers are demostrated to be viable, efficient and guarantee a
good reference tracking ability, and (v) the control system should henefit from the advantages of the continued
analytical development and implementation of dynamic model-based observers that promise to improve the
performance of different types of mechatronics systems. All the information presented in subsection 1 were
published in the paper (Szedlak-Stinean et al., 2022a).

2. The electric drive system with time-varying inputs with a brushless motor (EDS-TVI-BLDC)
The Matlab/Simulink block diagram of the BLDC drive (Stinean, 2014) is illustrated in Fig. 4.
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Fig. 4. Matlab/Simulink block diagram of BLDC drive



The MM of the three-phase BLDC motor is of the fourth order, having as states variables iy, iy, O and wm. In
this context, the process dynamics can he divided into two subsystems: the electromagnetic subsystem (ES) and the
mechanical subsystem (MS). The dynamic equations associated with the two subsystems in state-space form are:

; -R 0 2 1
ES . ,:H = L-M ’:a + 3( L - M‘) 3([— - M) l!rlln - ()u.‘.

Iy 0 i 13 2 ] Ve = €

L-M 3(L-M) 3(L-M) )
MC’ s cnin + eh"‘h g CJ{ f, i
@,
q 0 1 0 0
“h Joine Om JsLoe Juine

where xgs=[i, /)" (here, T represents matrix transposition) are the states of the ES and xus=[0» wm]” are the states of
the MS. From the five observers developed for this mechatronic application, only three design approaches will be
presented below, since the KFO and the SMO were already presented in the subsection above and also in the paper
(Szedlak-Stinean et al., 2022a). The three design approaches will only use the dynamic model corresponding to the
MS.

2.1. Observer of m*" Order Derivatives with Filtration Technique (OFT)

The ideal m* order derivative is characterized by a pure anticipatory dynamic, so it is not practically
achievable. A possible solution is to use an n order low-pass filter for the measured &, connected in series with a
pure derivation operator, respecting the constraint m<n. The values m = 2 and n = 3 are set due to the fact that
d*8n/dt*=dwn/dt=€, where € represents the acceleration. Using the substitution x=[x; x; x3]"=[%m wm €] the observable
canonical form used in the observer structure in Fig. 4 is:

6.l o 1 o78,]To
- m ) m . (:05'3 (15)
o,z 0 0 1 Jo,|+ 01, o &=

4 " s'tas’+asta, "
€ -y, —a —a,| € a, :
S ——

: y e

Naming this structure an observer is justified since Fig. 5 shows a correction based on the output estimation
error, although for the estimation using the filtering technique this idea was not the starting point. It is expected that
the dynamic response of the estimate is slower because through the coefficient ap there is only one direct correction
term based on the position error. The terms a; and a, appear as state feedbacks and not the estimation error. The
observer design uses the pole placement method. For the imposed poles (real negative ones) P, = {p1, pa2 p3} the

observer coefficients are:
y =~(py+ Pyt P3)iay = pipyt PPyt PPy @y ==pipaps. (16)

-

Fig. 5. OFT block diagram
2.2. Extended Luenberger State Observer with 8m and Me as Inputs (ELSO+Me)

A solution to compute the state estimates @, £ and M is to use an extended Luenberger state

Load
observer (ELSO) having as predictive correction term the mechanical position error, A@ =6 —Bm and as direct

input the electromagnetic torque, M.. For M.q an exogenous model of step signal class is used. In this particular
case of ELSO, the state-space equations are (Luenberger, 1966; Andreescu, 1999):

O N A N
o =0 == | B [+ i 4|1 0,8,
My 0 ‘B(L)M H(L)I | M s R(L}M l; {17)
0,
y=[l 0 0] o,
] -
¢ M



where x = [0m Wm Mioaa]” and the parameters /;, I> and I; of the observer gain are calculated using the pole placement
method, knowing that the pair (A,C) is observable. The ELSO+Me structure is presented in Fig. 6 and the observer
parameters are:
h==p+p,+ =Bl Jype, (18)
h=ppy+ ppy+ PP =Bl Jyne), b= gine iy

The observer coefficients depend as expected on the MS parameters (especially on Jainoc). These coefficients
determine the dynamics of the observer convergence speed. The idea of using all physical states as observer inputs
leads to an observer with improved performance with minimal dvnamic delays.

Fig. 6. ELSO+Me block diagram

2.3. Extended Luenberger State Observer with 8m as Input (ELSO-Me)

Another solution to compute the estimates @ and £ is to use an ELSO considering only the mechanical
position error term, without any other input. The motion model is chosen with € = const, a case commonly
encountered in constant acceleration with constant electromagnetic torque and in constant steady-state motion
regimes. For this case of ELSO-M., (here, x = [0, wm €]") the state-space equations are (Luenberger, 1966;
Andreescu, 1999):

ém 0 1 0 ém ]I
o, |=|0 0 1||la,|+|4]|®,-6,),
g 0 0 ofl & i
éill_
yv=[1 0 0]la, |
e——]
c €

The ELSO-Me block diagram is illustrated in Fig. 7. The observer compensator design L = [l; I; [3)Tis also done with the
pole placement method and the observer parameters are:

Lh==p+py+pyly=pp,+ PPyt PPl ==ppaps. (20)

n

Fig. 7. ELSO-Me block diagram

The validation of the control approaches is done using two simulation scenarios. The digital simulation results
are given in Fig. 8 to Fig. 12.
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Fig. 8. Digital results for BLDC drive with OTF: a) Angular speed versus time (reference 1), b) Acceleration versus
time (reference 1), c) Angular speed versus time (reference 2), b) Acceleration versus time (reference 2)




Fig. 9. Digital results for BLDC drive with ELSO+Me: a) Angular speed versus time (reference 1), b) Acceleration
versus time (reference 1), ¢) Angular speed versus time (reference 2), b) Acceleration versus time (reference 2)
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Fig. 10. Digital results for BLDC drive with ELSO-Me: a) Angular speed versus time (reference 1), b) Acceleration
versus time (reference 1), ¢} Angular speed versus time (reference 2), b) Acceleration versus time (reference 2)
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Fig. 11. Digital results for BLDC drive with SMO: a) Angular speed versus time (reference 1), b) Acceleration versus
time (reference 1), c) Angular speed versus time (reference 2), b) Acceleration versus time (reference 2)
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Fig. 12. Digital results for BLDC drive with KFO: a) Angular speed versus time (reference 1), b) Acceleration versus time
(reference 1), c) Angular speed versus time (reference 2), b) Acceleration versus time (reference 2)

Considering the graphs illustrated in Fig. 8 to 12, a set of following conclusions is next pointed out: (i) the
OTF design approach gives a slower convergence rate and therefore has a large transient error because it uses only
one direct correction term by means of the coefficient ay; (ii) the ELSO+M, uses the electromagnetic torque, resulting
in a minimum phase delay. It also ensures that the load torque is estimated but has the disadvantage that the
parameters of the observer gain depend on the parameters of the MS; (iii) the ELSO-M. is more robust to the variation
of the MS parameters and does not require the use of the electromagnetic torque; (iv) the estimated states @ and £
obtained with the SMO and KFO techniques are similar to the measured states @ and g; (v) based on the
comparative analysis of the five design approaches it can be concluded that the proposed observers, namely OTF,
ELSO+M,, ELSO-M,, SMO and KFO, prove to be viable and ensure a good reference tracking ability and (vi) the use of
these observers leads to dynamically and permanently improved performance. All the information presented in
subsection 2 were published in the paper (Szedlak-Stinean et al., 2019a).

3. The electric drive system which wraps a strip with constant linear velocity on a drum - electric drive system with
variable parameters (SWS)

The mechatronics equipment presents three specific characteristics, (1) to (3): (1) the desired linear speed
Vrer (M/s) is the product between the angular velocity reference input w.s (rad/s) and the actual value of the drum
radius r(t) (m); (2) due to the winding on the drum made out of brass, the moment of inertia of the rolling drum Jp
(kg:m?) will increase in time; (3) the linear velocity of the material v, (m/s) imposed by the pressing rollers — linear
velocity of the drum vp (m/s) —and the resistance force of the material f, (N) must remain constant (Stinean, 2014):

V,y =, 11, v (D) =Vv,()=const, f,(1)=const. (21)
In order to ensure the performance specifications required by the transient regime and the stationary regime, the
analysis and synthesis of the afferent control structure requires that the mathematical modeling reproduces as
accurately as possible the real operating conditions of the system. In this context, the variation of the angular
velocity of the drum wy (rad/s) and also the variation of the total moment of inertia of the system Jior(t) (kg-m?) are:

w,(=aw(), J,@)=J,+J +a'Jd (1), (22)

empty_drim



where: a — the transmission parameter that characterizes the speed reduction unit, w - the angular velocity of the
motor (rotor) (rad/s), J» — the moment of inertia of the motor (rotor) (kg:m?), Jempty_drum = the moment of inertia of
the drum without material on it (kg-m?). Assuming that the thickness of the material (h, (m)) wrapped on the drum is
small enough, the drum radius variation r(t) (m) and the variation of drum’s moment of inertia Jp, (kg-m?) are
approximated as follows:

f"(.f)m%(uf(r)zgf?u w(r), (23)

_pAllr(0)=n ]’

Jp= i
D by

where: p — the density of the brass material (kg/m?), / — the drum width (m), and ro — the initial value of the drum
radius (m). Taking into consideration these aspects, the behavior of the SWS is described by the following nonlinear
state equations (Stinean, 2014):

; R k k
i ()= —L—" i () - L—“m(r) + L—F u (1),

a a a

fan ki B 1 . _ar(.‘), B k,
o0 =55 O T w0y HO T 24)

£, ()= Car(a(t)-Cv, (1),
J (@) =a’p L Hr(t) = r, ] o),

(1)

F(t) = _)j—;:a o(t),

where: i, |- the armature current intensity (A), Lo, Ra, To=Ls/Ra — the electrical parameters (H, Q, s), ke, kn — the
electromagnetic parameters (V/rad/s, N-m/A), ke — the actuator gain (V/V), uc — the control signal or the control
voltage (V), u, — the armature voltage (V), and C - the elasticity constant of the material (N/m). The state-space
model of the SWS is obtained by inserting the state variables x;(t) = io(t), x2(t) = w(t), x3(t) = fult), xa(t) = Jiar(t), xs5(t) =
r(t):

A .1 0 0 0] "k "
x,(0) L, L, sl L—l "
. I 3 Iy () -7, 3 : k. i g ]
%, (1) 'f,,, _ap r[l_(f)‘ n1'x, () +k, majxﬁ(z) o of=0| |5 o f ”
X0 | = ,1_;(” .l_l(f.) .14(1) x,(1) |+ ¢ .
'-(I) 0 Cax(t) 0 0 0 '(’) 0 -C v, ()
X X
h 0 aplhx,(0)-r] 0 0 of™ 0 0 (25)
*,(0) h | X5(1) 0 0
0 — 0 0 0 i i
L 2r ]
x,(1)
x,(1)
y)=[0 10 0 0]x(0)]|=x()
x,(1)
x5(1)

The structure and relations between the different subsystems of the controlled process are presented
through a nonlinear block diagram in Fig. 13.
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Fig. 13. Block diagram of SWS



3.1. Extended Kalman filter system modeling and design for SWS
The dynamics for the EKF are pointed out as follows in their single input-single output discrete-discrete

expression obtained from processing the results reported in (Julier and Uhlmann, 2004; Simon, 2006; Beyhan et al.,
2013; EKF, 2022):

1. The nonlinear model of the nonlinear system subjected to nonlinear estimation is represented by the
state-space equations:

X, =f(x,,u)+gw,

Vi =h(x,)+v,, (26)
w,~ N (0,0),

v, ~N(O,R),

where: x, € R” - the state vector, u,—the input, f: " xR — R" ~ a nonlinear function that gives the predicted
state from the previous estimate, /1:R" — ‘R ~ a nonlinear function that calculates the predicted measurement
from the actual state, w, € R, v, € R - the white noise process and measurement noise, respectively, assumed to
be of zero mean and uncorrelated with the initial state vector X, € K" and with each other, g e R" ! — the process

noise matrix assumed to be independent of x, QeR, ReR - the process and measurement covariance,
respectively, with Q>0 and R>0.

2. The EKF predict-update equations are:

Predictor update:
i**'l‘ = (X0 4,), -
Py = FiPy, F'+g0g’.
F, = c'?f(“x,u) ‘
X ‘--“lp-"" ty
Filter update:
P = h(iﬂk—'r)’
& =Y~ Vi
r (28)
Se =Hy By, ||AH£-»I + R,
T
__ Pm1|kHA—»|
T
St
ihl|k+| = ihlh— +K 60 (29)
wal]m =i, _KMIHAnI)Pk»lM‘
Ch(x)
Hj.-u ] s
Ox

X=X g

where: ik|f:wl €R" - the estimated state vector, p - the estimated output, ¢, - the error of the estimate,
P, e R"" - the error covariance matrix, S, € N~ the residual covariance, K, € R"' — the Kalman gain matrix,

F, € ™" - the state transition matrix, H, e R"" - the state observation matrix, and I, = diag(l,....]) e R"" -
the nt" order identity matrix. As shown in (29), the states of this filtering approach are updated using Ky and also
€,,,- The second equation in (27), the third equation in (28) and the second equation in (29), which make use of the

Jacobian matrices F and Hy, highlight that the Py and K« matrices are updated using linearized process dynamics
around the current estimate.

3. The initial conditions imposed to the dynamic system in (27) are:

X = £ ),

(30)
P

"‘(:Iku = VC”‘(X ko )’

where E indicates mathematical expectation and Vor indicates variance. The initial condition imposed to the dynamic
system in (26) is

%y, ~ N Ryg s Pip ) (31)
The EKF block diagram is presented in Fig. 14.



| - 1
| U Extended | Ji_ |
! | Kalman s
! filter [—>
| &
| LI
: Hy »| Nonlinear :
I system |
| —

W (SWs) ;
|k EKF |

Fig. 14. EKF block diagram

3.2. Takagi-Sugeno fuzzy observer system modeling and design for SWS

To develop a TSFO it is required to have a TS fuzzy model of the nonlinear system subjected to observation.
Thus, in this approach, an essential step is the development of a fuzzy model. Generally, there are two ways for
obtaining fuzzy models, (1) and (2): (1) Identification (fuzzy modeling) utilizing input-output data, and (2) Derivation
from known equations of the nonlinear system.

Using the sector nonlinearity approach ((Kawamoto et al., 1992; Johansen et al., 2000; Mehran, 2008)) is a
popular way of obtaining the TS fuzzy models. This approach for the development of fuzzy models was first
mentioned in (Kawamoto et al., 1992), and it is based on the following strategy. Considering a simple first order
system x= f(x(¢)), with f{0)=0, the goal is finding a global sector that fulfills the condition
x= f(x()e [a| a:]x(t)- Following this approach ensures the construction of an exact fuzzy model. Since it is at
times challenging to find a global sector for nonlinear systems, local sector nonlinearity can be taken into
consideration. This is a valid approach given the fact that the variables of real-world systems are always bounded.

TS fuzzy models

Model rule i:

X(¢)= A x(r)+ Bu(s),
IF (1) IS M, AND...AND z,(1) IS M, THEN {\() m’x(c) mlu() i=1.ing, (52}
y = lx ?

where: zy(t), z2(t), ..., Z4(t) = the premise (scheduling) variables, M; — the fuzzy sets or, more specifically, the linguistic
terms of the scheduling variables, ng=27 — the number of model rules, x <" — the state vector, ye %" — the input
vector, y e R’ — the output vector, A eR™ = the square state or system matrices, B, W~ the input matrices, and

Cenr — the output matrices. Each linear right-hand term of the state equations in the consequent of (13)
represented by the relation A x(/)+B,u(,) is labeled as subsystem. Taking into consideration the state vector-input
vector pair (x(t), u(t)), the final outputs of the Takagi-Sugeno fuzzy model are given in the following relations
(Johansen et al., 2000; Mehran, 2008; Beyhan et al., 2013):
> wONA X0 +Bu@)}
(1) == =3 h(z()){AX(0)+Bu()},
Z“’;(l(f)) 2 (33)
i=1

iy

D owlzCx(@)
¥() = L =3 ", (2("))C;x(t),

ﬁ w,(2(1)) =

i=1
where z(t) and wi(t) are
() =[z,() z,@) .. z,O,
q (34)
w () =M, (z,()), i=1..ng.
i

In (33) and (34), w,(t) represents the weight or firing functions and these functions for all t are normalized
according to

I (z(t))=7’m. f=1.,. (35)

2 wi(z(1)

i=1
Knowing that

Hy

Z. w,(z(1)) > 0, (36)

w(z(1))20, i=1..n,,



for all t, the following relationship is valid:

iy

> h(z(t) =1, (37)
i=1

hi(z(t) 20, i=1.n,

TSFO observer design

The conditions that must be fulfilled for the design of the Takagi-Sugeno fuzzy observer are in fact stability
conditions to guarantee the stability of the autonomous dynamic system that corresponds to the state equation in
(33), which is the first equation in (33), i.e. that system for y(;)=0. These conditions are derived using the Lyapunov
approach (Tanaka and Sugeno, 1990; Tanaka and Sugeno, 1992; Tanaka and Wang, 2001). The basic stability
conditions for an autonomous Takagi-Sugeno fuzzy system are given in Theorem 1 (Tanaka et al., 1998; Beyhan et al.,
2013).

Theorem 1: The equilibrium point x=0 of the continuous-time Takagi-Sugeno fuzzy model described by

&) = ihf(l(!))/l,x(-’) is asymptotically stable, if there exists a positive definite matrix P=P7, p=%"" such that the

following LMs are fulfilled:
AP+PA, <0, i=1.n,. (38)

Solving the LMIs in (38) using (Tanaka and Wang, 1997) makes use of the presence of the positive definite matrix P.
The Takagi-Sugeno fuzzy observer is described using

N

X(1) =D b (Z(EDIA X+ Bu() + L, (y(O) -y, (39)
=1

¥ = b (2()C,X(0),
where L;, i=1_,'_}1'R are the observer gain matrices, L, e ®"". The purpose of this nonlinear observer is to estimate
the states of the Takagi-Sugeno fuzzy model (33), which is accomplished if the error dynamics are asymptotically
stable. Subtracting (39) from (33) and defining the error of the estimated state vector &(¢) = x(z)—x(¢), the error
dynamics is expressed as (Tanaka et al., 1998; Beyhan et al., 2013)

€0 = 1 z)h, (2(0))A, - L,C,)e(r). (40)
i=l J=1

Immeasurable premise variables need to be considered in the design of Takagi-Sugeno fuzzy observers. In
this case, according to (Tanaka and Wang, 2001), the premise variables are unknown since they depend on the state
variables to be estimated by the fuzzy observer. Therefore, although the Takagi-Sugeno fuzzy observer defined in
(39) is defined with respect to the error of the estimated output vector y(¢)—y(t), the error dynamics as presented
in (40) is expressed with respect to the estimated state vector are not valid and need to be revised, impacting the
observer design.

The stability conditions — with a proper convergence rate - of the Takagi-Sugeno fuzzy observer are given in
Theorem 2 and Theorem 3, respectively (Tanaka et al., 1998; Beyhan et al., 2013).

Theorem 2: The error dynamics described by (40) for the Takagi-Sugeno fuzzy model (33) is asymptotically
stable, if there exists a positive definite matrix P=P7, P e ®"*" such that

F(P(A,-L,C,)<0.
H(G,+G )<,
G,=PA,-LC),

(41)

forall 7, j=1...n, excepting the pairs (i,j) for which hi(z(t))h/(z(t))=0.
Theorem 3: The proper convergence rate of the error dynamics described by (40) is at least q, if there exists
a positive definite matrix P=PT, P € R"", such that
F(P(A, ~L,C,)+2uP <0, (42)
H(G, +G ,)+daP <0,
for all i, j=1..n, excepting the pairs (i,j) for which hi(z(t))h(z(t))=0. In the last two theorems, $€ denotes the
Hermitian matrix, and is defined as #((A)= A+ A" .

In order to obtain high performance of the SWS, two nonlinear estimation approaches, namely EKF and
TSFO-32, are developed, tested and validated by means of digital simulation results. The system’s responses with
respect to the imposed modification of the reference input, which leads to a moment of inertia variation and causes
an increased drum radius for the mechatronics application, are illustrated in Fig. 15, Fig. 16 and Fig. 17.
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Fig. 15. Simulation results for SWS: angular velocity (a), zoomed plot of angular velocity-detail 1 (b) versus time and zoomed
plot of angular velocity-detail 2 (c) versus time
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Taking into account all the information presented in the previous subsections, the graphs illustrated in Figs.
15 to 17, the following conclusions are expressed: (i) the EKF that linearizes about an estimate of the current mean
and covariance uses the linearized dynamics to compute the estimates; (i) the TSFO-32 uses the sector nonlinearity
approach to model the nonlinear process. The system stability and observer design conditions are guaranteed by
using LMls, which are solved by utilizing the Mosek solver within the YALMIP toolbox; (iii) the results illustrated in
Figs. 15 to 17 show that the TSFO-32 provides better performance than the EKF due to the fact that the design of the
TSFO is based on the exact knowledge of the nonlinear system; (iv) based on the comparative analysis of the two
design approaches it can be concluded that the proposed nonlinear observers, namely EKF and TSFO-32, prove to be
viable, efficient and ensure a good reference tracking ability and (v) the use of these nonlinear estimation
approaches leads to dynamically and permanently improved performance. The results presented support the
benefits of controller design approaches and their application to processes with variable parameters. All the
information presented in subsection 3 were published in the paper (Szedlak-Stinean et al., 2022b).

The 3, 4" and 5% stages of the project — Suspended activity - Maternity leave. The suspension of the project
starting from 01.10.2019 and until 30.11.2021, the reason for the interruption being the entry into maternity leave
and then the entry into child-raising leave.

The 6" and 7 stage of the project — Experimental validation of the proposed modern control solutions — pursued
within december 2021 and in 2022 (January = November 2022) has been completed and is grouped in the form of the
following activity:

Act 6.1 (7.1) — Validation of observers through experimental results. To carry out this activity, the analysis of

theoretical research and the classification of observers specific to mechatronics systems from stage 1, was also
considered.

4. The laboratory equipment - Model 220 Industrial Plant Emulator (M220IPE)

The structure of the mechatronics application that represents the controlled process (M220IPE) is
presented in Fig. 18. The dynamic equations that describe the mechatronics system in case of rigid (a) and flexible (b)
drive dynamics, considering &; as the process output are:

a) J, é]+(cI +c3g"’)9, =l
i o 5 . . (43)
b) J, 0+ (e, +epg )0 —c,g” 0,+ k(g0 —g76,)=T,,

J, 92+ (e, "'“"'12)91_‘-}3&'4 9|+]"(9:' _g"lgﬂzo-



with Ja, Jo, , Jp, g @and g” expressed as:
=2 -
Jdr = ‘jd S Jpg o+ Jl‘g i Jn‘ = J(Irh' + Jn'dr'
J,=J Jr=Jaa s !

r per +‘]p,’:f + J
g=6n,/n, g=n,/12.

backlash?

where J4 — total inertia reflected to the drive disk, J,, Ja, J; — pulley, drive disk and load disk inertia, ci, ¢; — the drive
and load friction, g, g” = drive gear and partial gear system ratio, 9y, 9;, 9, — drive disk, load disk and idler pulleys
positions where th=gi%; or $;=g"9,.

/O electronics

DSP based controller e |

Electromechanical subsystem M220IPE |

Fig. 18. M220IPE laboratory equipment

Rigid Drive Dynamics: The first principle equations that describe the system in case of rigid drive dynamics are (ECP,
2010; Szedlak-Stinean et al., 2016):

X =,

s o latee™y | i (45)
4 Jo+J, 87 +)g7 S+, g7 g

y=x.
The state-space MM (S5-MM) of M220IPE with rigid drive dynamics is:

1 [0 1 ’ 0
['I:'z 0 ..__(C-'"'C:g\) '?i:l+ 1 TSI TrJ,
¥ Jo+d,g gt Bl |, 40,80 87

y=[! 0][-*‘: -r:];r-

where Tp is the drive torque (Tp=u), x=[x; x2J" = [3: d¥;/dt]"is the state vector (T indicates matrix transposition) and y
is the output. Considering zero initial conditions, the application of the Laplace transform to (43a)) leads to the
following transfer function (t.f.):

Hl(s) _ 1/(.]“. +J‘,g'-:+.},g:) (47)
Tp(s)  sls+(e, +e,g” W, +J,87+J,g7)])

(46)

Flexible Drive Dynamics: The first principle equations that describe the system in case of flexible drive dynamics are
(ECP, 2010):

X =Xy,
3y = - (kg *)x, M (¢, +cpg™)x, + kg™ i@ g’ !

‘]rfr Jr{r ‘]rl'r ‘](fr (48)
Xy =X,

i = (kg ), | (g hxy | (h)x | = (e +ep)x,
d J; J, d

"

y=X.
The SS-MM of M220IPE with flexible drive dynamics is:



. 0 1 ., 0 0 0

Xy (kg™ (e, +cpg?) kg™ c,g” | ;

; = (()ﬁ (ciu (L)b lm X +J, +Jl,g +J,g B (49)
A3 X,

¢ kg™ g™ =k -le+ey) \_' 0

- Ji J, 4, J, S B

= 0 0 0% & £ 51N

where Tj is the drive torque (Tp=u, u is the input), x=[x; x2 X3 x4]"=[3; d3/dt 3, d3./dt]" is the state vector and y is the
output. The following t.f. is attached to (49):

0,(s)  Js*+(c,+cp)s+k (50)
To(s) dys*+ds’+ds®+ds’

where dy=la), ds=dar(CatCaz)+Ii(C1+C12/G?), da=tack+dik/G?+C1Ca+C1C12+C12C2/ G, di=cik+Cak/g2.
4.1. Continuous-time linear observer - state feedback and observer-based controller design
In cases where the process states are not accessible for measurements or are only partially accessible for
measurements and if the process is observable, then it is possible to estimate its states. For this purpose, state
estimators or state observers are utilized. The observability test of the linearized SS-MMs (46) and (49) can be done
using the matrix:

Q,=[¢" ¢4 CA* CTA° C"AL.T. (51)

The starting point in order to specify the relations that describe the functioning of a state observer, is the
SS-MM corresponding to the process, assumed known, with the form:

x=Ax+Bu,
(52)

y=Cx.

The variable that is the target of the control process is the output. Firstly, all components of the state vector
are assumed as measured. The feedback is constrained to be linear, so it can be considered as (Astrdm and Murray,
2009):

u=-Kx+X,,r (53)
where r is the reference input, K.s is the feed-forward gain and K is the state feedback gain matrix. The state
feedback gain matrix of M220IPE with rigid (a) and flexible (b) drive dynamics are:

a) K=k, Kals

by K=[k, ko ki kyl

¢

(54)

The pole placement method is applied to compute K using three sets of imposed poles, each for three
specific load disk inertia values, i.e., Jiy, Jiz Jiz. The closed loop system obtained when the feedback (53) is applied to
the system (52) is given by:

x=(A-BK)x+BK,r. (55)

The SS-MM corresponding to the state observer has the same structure as the process (52) and is
completed with a correction relation based on the output error y = y— y. Consequently, the MM is rewritten in
the form (Astrém and Murray, 2009):

x=A%X+Bu+L(y-CX)=(A-LC)7+Bu+Ly,
75=C%&,

(56)

where L is the observer gain. The parameters of the observer gain for M220IPE with rigid (a) and flexible (b) drive
dynamics are:

a@) L= LI

b L=l & L LTS

In order to analyze the observer, the state estimation error is defined as X = x — X . Differentiating and
replacing the expressions of X and X leadsto X = (4 — LC)% . The error X will go to zero if the matrix L is chosen

such that the matrix (A-LC) has eigenvalues / poles with negative real parts. The appropriate selection of the

eigenvalues / poles determines the convergence rate (Astrém and Murray, 2009). Taking this into account, the design
of the state observer involves solving a poles placement problem and also calculating the parameters of the observer
gain. The starting point in designing the state observer is the expression of the characteristic polynomial:

(57)

A, ) =det(sI-A+LC)=s"+a, s +.+as+a,. (58)
By allocating the poles of the observer, the characteristic polynomial A.s(s) is expressed as:
Aob(s) = I—[(S - p()l‘) = S” + lr—ISn—]"‘ + [3() (59)

Because both the system (52) and the observer (56) have the same order n, the order of the closed loop
system is 2n. In order to obtain the state feedback observer, the design of the observer as well as the design of the
state feedback can be realized separately. The closed-loop system is defined as:



ey i
X 0 A-LC|X 0

Due to the fact that the matrix on the right side is block diagonal, the characteristic polynomial of the
closed-loop system has the form:

A (s)=det(sI-A+BK)det(sI-A+LC). (61)

This property is called the separation principle (Astrém and Murray, 2009). A schematic diagram of the
controller is illustrated in Fig. 19. It can be observed that the controller includes a dynamic model of the plant, thus
respecting the internal model principle. It can also be noticed that the observer determines the dynamics of the
controller. As such, the controller can be regarded as a dynamical system having y as input and v as output:

X=(A-BK-LC)x+Ly,

(62)
u=-Kx+K,,r.
The t.f. of the controller has the form:
H_ (s)=K[sI-A+BK+LC["L. (63)

The proposed design approaches were tested and validated by real-time experimental results. The system’s
responses in two experimental scenarios were considered: 1. the proposed control solutions responses were tested
first using a step reference and are illustrated in Fig. 20 and 22 and 2. a staircase change for the reference signal was
employed and the proposed control solutions were tested again on the time frame of 30s and are illustrated in Fig.
21 and 23.

Taking into account the graphs illustrated in Fig. 20 to 23, a set of following conclusions are pointed out: (i)
the motivation to use observers (state observers) is due to the fact that through the predictive negative reaction,
these design approaches have the advantage of faster convergence and a reduced sensitivity of estimation to
parameter variation; (ii) the controller structure is identical for systems with one input and one output as well as for
systems with multiple inputs and outputs with the same form for the controller equations, the only difference being
the fact that the feedback gain K and the observer gain L are matrices instead of vectors; (iii) the separation principle
- for the output feedback, the eigenvalue assignment can be split into an observer and a state feedback eigenvalue
assignment — leads to a simplified design; (iv) with one dynamic system both a controller and an observer can be
developed; (v) the proposed approaches offer contributions for the robustness and dynamic performance of the
system; (vi) based on the comparative analysis it can be concluded that the proposed design approaches, prove to be
viable and ensure a good reference tracking ability; (vii) the use of these state observers leads to dynamically and
permanently improved performance. All the information presented in subsection 4.1 were published in the paper
(Szedlak-Stinean et al., 2019b).
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Fig. 19. Schematic diagram of an observer-based controller

Fig. 20. Experimental results concerning the behaviour of observer-based controller designed for MIPE220 with
rigid drive dynamics (step reference): case study 1, 2 and 3
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Fig. 21. Experimental results concerning the behaviour of observer-based controller designed for MIPE220 with rigid drive
dynamics (staircase reference): case study 1, 2 and 3
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Fig. 22. Experimental results concerning the behaviour of observer-based controller designed for MIPE220 with flexible
drive dynamics (step reference): case study 1, 2 and 3
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Fig. 23. Experimental results concerning the behaviour of observer-based controller designed for
drive dynamics (staircase reference): case study 1, 2 and 3

4.2. Discrete-time linear and nonlinear observers
In order to carry out a comparative study with the purpose of evaluating their performance and efficiency,

the four estimation techniques presented in subsections 4.2.1, 4.2.2, 4.2.3 and 4.2.4 are considered.

4.2.1.  Kalman Filter Observer (KFO)
In order to estimate unmeasured states of a process, in control systems engineering for linear systems, KFO

which are actually a form of predictor-corrector are widely used. In this context, as part of an approach for designing a
control law, the estimated states can be employed (Lendek et al., 2008; Habibullah and Lu, 2015; KF, 2022). The

discrete-time dynamical state-space model is defined by (KF, 2022):
X, = A X+ B A w
k k-1 d™"k k-1 (64)
Vi =Cuxy,

xd

Ve =WtV
where k is a discrete point in time (the immediate past time point is k—1), xx is the state vector, u, is the input, yy is the
output, 5’1 is the measured output and wy, v, are the white process and white measurement noise, zero mean

Gaussian with covariance Qx and Ry, w, ~ #(0.0,), v, ~NOR,)- The KFO predictor-corrector equations are (KF, 2022):

Predictor:
X, =ALX +Bu, (65)

Pr= AIJPA—IATJ +Q,,
Corrector:
K,=P;C/(C,P,C,+R,)",
iﬁ- :i;+Kk(:"‘;&—Cu‘i;)' 160!

P, =(I-K,C,)P.,



where X, is the estimated state vector and X, = E(x, | 2 Vaseen ,y ) Pr is the error covariance matrix and
P, = E(x, | ¥, )5 ¥, ) Vis the identity matrix, and Ky is the Kalman gain matrix.

4.2.2. Extended Luenberger State Observer (ELSO)

Another way to compute the estimate states of a process, is to utilize a discrete-time ELSO, a Simulink block,
which uses the backward Euler method in the discretization (Luenberger, 1966; Luenberger, 2022; Szedlak-Stinean et
al., 2019a). The discrete-time dynamic model of ELSO and the dynamics of the estimation error are:

"f.(- a=AX, + By + L, (v, — ), 67}

Y =Cuxy,

e, =(A,~-L,C, e,
where X, Is the k" estimated state vector, v, is the estimated output, uy is the input, y, is the output, ey is the k™

error vector, A,q, Bg and C; are the discretized state, input and output matrices, and Ly is the discretized observer gain
matrix. Considering that the matrix (Aw—LsCq) has its eigenvalues inside the unit circle, the observer gain matrix Ly is
calculated by solving a Sylvester equation (Luenberger, 2022; Szedlak-Stinean et al., 2019a)

I =G X, (68)
where X is the matrix resulting in terms of solving
AL X-XA=ClG, (69)

G is an arbitrary matrix, A is a matrix with the desired eigenvalues, which are different to the eigenvalues of A,.
4.2.3. Extended Kalman Filter Observer (EKFQ)

EKFO is the nonlinear version of KFO, and it is the most commonly used observer at this time in the category
of those based on nonlinear estimation (Beyhan et al., 2013; Simon, 2006; EKF, 2022). The discrete-time dynamical
model is defined by the equations

X =f(x,_ 0 k) +w,_, (70)

Ve =h(x, 0, k)
Fe=ytv,
where X, Uk, Vi, ﬁk , wy and vy are exactly the same vectors, variables and parameters as in the case of KFO and fand h

are nonlinear functions connecting the past state, current input and current time to the next state and current output.
The equations for the EKFO predictor-corrector are (Beyhan et al., 2013; Simon, 2006; EKF, 2022)

Predictor:
x; = (X, u,, k), (71)
P =F_P_F_,+Q,,
F, ﬁil »
X (R 0y 400
Corrector:
K, =P H{(H,P/H; +R)",
%, = &; + K, (7, - h(37,u,,k)), (72)
P.=(1-K,H, )P,
A
wof
Ox (i oty )

4.2.4. Sliding Mode Observer (SMO)

SMOs are successfully integrated into mechatronic systems and generally their structures are closely related
to the MMs used in the controlled process. In comparison to linear observers, the main (principal) advantage that the
SMOs have is that in the case of unknown inputs they are insensitive while in sliding. They can, additionally, be utilized
in order to reconstitute unknown inputs that could be a mixture of system disturbances, errors or nonlinearities
(Spurgeon, 2008; Mercorelli, 2015; Shtessel et al., 2014). Considering the discrete-time dynamic system

X = A X + By, (73)
¥, =C,x,,

and omitting the subscript k that indicates the discrete point in time for the sake of simplicity,
xeR" ueR’ yeR”, y=[y,..y,]" itis assumed that the pair (A, CJ) is observable, and C, has full rank.

= m

Transforming the system in (73) into
Xipn = A.m‘_ Xt A.u{_ Y + By W, (74)

Yea = Ay X+ A, w2y, +B, ou,,

the discrete-time dynamic model of SMO is [(Spurgeon, 2008; Mercorelli, 2015; Shtessel et al., 2014)
iIJHl = A\'d_llil,k + A.\d_ I.’!S'.k +Bd_ u, +Lv,, (75)

Yia = Ay aX + Ay oV, +B, u-v,,



where § e R", § =7, ... 7,1", is the estimated output vector, and v e R”, ¥ =[¥, ...7, ], is an injection term
specific to sliding mode control but employed here in SMO. Using the notation e =y-y =[e" ___L,:{']T for the output
estimation error, the expression of the injection term is

Wi 2 [V Wi T S sgn(erf,_k)...MSgn(ef'_,\_ I (76)

where the value of the scalar parameter M e R, is set to M=1 as follows.
The error dynamics is expressed as

Cun = Ay €aut A‘rd__lle‘r.i- +L,v,, (77)
e a=Ay e tA, 284 T Ve

where e, =X,-X,,e =y, —y, and L is again value / matrix. The expression of the equivalent injection term,
Vi = Ay 28 Ay pe 40 is obtained by solving e, «1=0, and allows the convenient analysis and design of SMO on
the sliding manifold. A sliding motion occurs on e,=0 in finite step if vi=vy ., and esn=(Ay +L,A, 5)e,, holds
in sliding mode. By replacing the eigenvalues of (A, s 55l A, 50 B8 the origin, e, —0in finite step.

The validation of the control techniques will be done through real-time experimental and digital simulation
results with respect to position control of M220IPE. A part of the digital simulation results is given in Fig. 24 and a
part of the real-time experimental results is shown in Fig. 25.
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Fig. 24. Digital results for M220IPE with SFCS and four estimation techniques: (a) RDD, (b) FDD
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Fig. 25. Real-time experimental results for M220IPE with SFCS and four estimation techniques: (a) RDD, (b) FDD

Considering the graphics presented in Fig. 24 and Fig. 25, the following conclusions can be highlighted: (i) the
two situations taken into consideration — rigid drive dynamics (RDD) and flexible drive dynamics (FDD) — showed that
the best efficiencies and performance have been obtained by the observers developed for M220IPE with FDD; (i) from
the performance point of view the best results have been achieved by the KFO and by the EKFO due to the fact that
these observers are simple to define and realize having basic knowledge and they also give satisfactory results in
operation due to optimality and structure; (iii) the ELSO is less efficient than KFO due to the fact that the process
parameters influence those of the observer gain; (iv) the SMO provides the worst performance given that in order to
provide an estimation, the output has to rest on a designated sliding surface and in addition, performance is rarely
guaranteed, particularly when the output are corrupted with noise; (v) the proposed estimation techniques are
demonstrated to be efficient, practical and guarantee a proper reference tracing capacity, and (vi) the control system
should benefit from the advantages of the ongoing analytical progress and realization of dynamic model-based
observers that promise to enhance the performance of different types of mechatronics systems. All the information
presented in subsection 4.2 were detailed in a paper accepted to be published (Szedlak-Stinean et al., 2022c).
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B. Presentation of the results obtained, of the achieved result indicators; of the recorded non-achievements

compared to the results estimated by the financing request (if a
The main results obtained in the 1t Stage of the project:
e 1scientific report: for 2018, the scientific report is the only deliverable of the project.
The main results obtained in the 2™ Stage of the project:

e 1 paper in Refereed Journals / Contributions to Books published in conference proceedings indexed in Clarivate
Analytics Web of Science (formerly ISI Web of Knowledge) (Roman et al., 2019): a mix of two data-driven algorithms
is proposed in (Roman et al., 2019a). The mix of the algorithms aims to exploit the main advantage of data-driven
Virtual Reference Feedback Tuning (VRFT) algorithm, that is represented by the automatic computation of the
optimal parameters using a metaheuristic Grey Wolf Optimizer (GWO) for the Compact Form Dynamic Linearization
(CFDL) version of the authors’ Model-Free Adaptive Control Takagi-Sugeno Fuzzy Algorithm (CFDLPDTSFA), so the
parameters of the CFDL-PDTSFA are optimally tuned in a model-free manner via VRFT.

e 2 papers published in conference proceedings indexed in Clarivate Analytics Web of Science (formerly ISI Web of
Knowledge) (Szedlak-Stinean et al., 2019a; Szedlak-Stinean et al., 2019b): five design approaches for the speed and
acceleration control of an electric drive system with time-varying inputs built around a brushless direct current motor
are developed in (Szedlak-Stinean et al., 2019a). Five observers are developed and tested in the context of a cascade
control structure with two control loops, which uses a variable structure controller in the inner loop (the current
loop) and a classical Pl controller in the outer loop (the speed loop); A controller with a novel structure, which is
composed of three subsystems: a subsystem that provides the desired output and from the reference input a feed-
forward signal, an observer and a feedback derived from the estimated states is developed and validated in (Szedlak-
Stinean et al., 2019b).

e 1 paper worked and edited in 2019 but published in 2020 in a Clarivate Analytics Web of Science (formerly ISl




Web of Knowledge) journal with high impact factor (Precup et al., 2020): two applications of Grey Wolf Optimizer
(GWO) algorithms to a path planning (PaPl) problem and a Proportional-Integral (PI)-fuzzy controller tuning problem
are developed in (Precup et al., 2020a). Both optimization problems solved by GWO algorithms are explained in
detail. An off-line GWO-based PaPl approach for Nonholonomic Wheeled Mobile Robots (NWMRs) in static
environments is proposed.

e 1 paper written in 2019 but published in 2020 in conference proceedings indexed in Clarivate Analytics Web of
Science (formerly ISI Web of Knowledge) (David et al., 2020): a novel application of Whale Optimization Algorithm
(WOA) as solution for solving a complex control design and tuning problem concerning fuzzy control systems that
control processes modeled as second-order servo systems with an integral component and variable parameters is
developed in (David et al., 2020).

e 1 scientific report.

The main results obtained in the 3", 4" and 5% stage of the project: Suspension of the project starting from
01.10.2019 and until 30.11.2021, the reason for the interruption being the entry into maternity leave and then the
entry into child-raising leave.

The main results obtained in the 6 stage of the project:

* 1scientific report: for the year 2021, more precisely for the month of December, the scientific report is the only
deliverable of the project.

The main results obtained in the 7* Stage of the project:

* 1 paper accepted and published in a Clarivate Analytics Web of Science (formerly ISI Web of Knowledge) journal
with high impact factor (Szedlak Stinean et al., 2022b): two nonlinear estimation approaches, namely based on
Extended Kalman Filter (EKF) and a Takagi-Sugeno Fuzzy Observer with 32 rules (TSFO-32), for a Strip Winding System
(SWS) characterized by variable reference input, variable moment of inertia with constant increasing tendency and
variable parameters.

¢ 9 papers presented in conference proceedings currently indexed and in the phase of being indexed in
international databases (IEEE Xplore, INSPEC, Scopus, DBLP) (Szedlak-Stinean et al., 2022a; Bojan-Dragos et al.,
2022a; Precup et al.,, 2022a; Roman et al., 2022a; Precup et al., 2022b; Hedrea et al., 2022; Roman et al., 2022b;
Szedlak-Stinean et al., 2022c; Gale-Cazan et al.,, 2022): four estimation approaches, namely two linear and two
nonlinear ones: Extended Luenberger State Observer (ELSO), Kalman Filter Observer (KFO), Extended Kalman Filter
Observer (EKFO) and Sliding Mode Observer (SMO) are developed in (Szedlak-Stinean et al., 2022a) for electric drive
systems (EDSs) with direct current (DC) motor; two Proportional-Integral-Derivative controllers, a type-1 fuzzy
controller and an interval type-2 fuzzy controller are optimally tuned in (Bojan-Dragos et al., 2022b) using
metaheuristic Grey Wolf Optimizer algorithm to control the nonlinear processes with Shape Memory Alloy (SMA)
wire actuators; the African Vultures Optimization Algorithm (AVOA)-based tuning of low-cost fuzzy controllers (first
order discrete-time intelligent Proportional-Integral controllers with Takagi-Sugeno-Kang Proportional-Derivative
fuzzy terms) is proposed in (Precup et al., 2022a) to control the payload position of tower crane systems with SMA
actuators; three data-driven control algorithms, namely Active Disturbance Rejection Control, Model-Free Adaptive
Control and Model Free Control are optimally tuned in terms of solving an optimization problem in (Roman et al,,
2022a) to the position control of shape memory alloy; three categories of nonlinear models of tower crane systems:
a first principles state-space model with GWO-based optimally tuned parameters, evolving TSK fuzzy models and a
TP-based model are developed and validated in (Precup et al., 2022b); 20 control system structures are designed in
(Hedrea et al.,, 2022) for the level control of vertical three tank systems using Tensor Product (TP)-based model
transformation in the framework of state feedback control; the paper (Roman et al., 2022b) proposes to compare the
performances of a proportional-integral controller whose parameters are determined in a model-based way using a
metaheuristic search algorithm, with the performances of a Pl determined in a mode-free way by using virtual
reference feedback tuning algorithm and using iterative feedback tuning algorithm to control the position of a shape
memory alloy (SMA) laboratory equipment; in (Szedlak-Stinean et al., 2022c) is provided a guide for the development
and implementation of four observers for estimating the angular position for Model 220 Industrial Plant Emulator
with state feedback control; the computation of the optimal values of a part of the nonlinear model of an unstable
transport (UnTrans) system are treated in (Gale-Cazan et al., 2022). Adequate optimization problems were defined
and next solved by the recent metaheuristic GWO algorithms.

Remarks:

e Some of the papers presented in Section C contain more than one project in the Acknowledgements section.
Several projects contributed to the creation of these papers because the same processes are controlled,
different controllers developed in different projects were proposed, and their fair comparison was
necessary.

* Al published papers or accepted to be published which contains research results obtained under this project
mentioned the support of UEFISCDI in the Acknowledgments section, together with the specification of the
submitting code of the funding application.

e In the scientific report related to 2019 and in the EvoC platform in the scientific results section related to
2"stage, the work entitled "MIMO Fuzzy Control Solutions for the Level Control of Vertical Two Tank
Systems" is also included, but due to the fact that this work does not contain in the Acknowledgments
section the submission code PN-I1I-P1-1.1-PD-2016-0331, it will not be included in this report nor on the
project web page

e The obtained results are also mentioned in the web page of the project, https://szedlak-
stinean.wixsite.com/nobsmecs, where all the information related to the development of the project will be
included.




C. The estimated impact of the results obtained, emphasizing the most significant result obtained.
The main results obtained in the project:
° Papers in Refereed Journals / Contributions to Books

R.-C. Roman, R.-E. Precup, C.-A. Bojan-Dragos and A.-l. Szedlak-Stinean. Combined Model-Free Adaptive Control with
Fuzzy Component by Virtual Reference Feedback Tuning for Tower Crane Systems, Procedia Computer Science
(Elsevier Science), vol. 162, pp. 267-274, 2019.

e Journal Papers:

A.-l. Szedlak-Stinean, R.-E. Precup, E. M. Petriu, R.-C. Roman, E.-L. Hedrea and C.-A. Bojan-Dragos (2022b). Extended
Kalman Filter and Takagi-Sugeno Fuzzy Observer for a Strip Winding System, accepted to be publisehd in Expert
Systems with Applications, vol. 208, pp. 118-215, impact factor (IF) = 8.665, IF according to 2021 Journal Citation
Reports (JCR) released by Clarivate Analytics in 2022 = 8.665.

e  Conference Proceedings papers

A.-l. Szedlak-Stinean, R.-E. Precup and R.-C. David (2019a). Speed and Acceleration Control of BLDC Drives Using
Different Types of Observers, 13th International Symposium on Applied Computational Intelligence and
Informatics (SACI 2019), Timisoara, Romania, pp. 229-236, 2019.

A.-l. Szedlak-Stinean, R.-E. Precup and R.-C. David (2019b). State Observers for Mechatronics Systems with Rigid and
Flexible Drive Dynamics, 16th International Conference on Informatics in Control, Automation and Robotics
(ICINCO 2019), Prague, Czech Republic, vol. 2, pp. 387-394, 2019.

A.-l. Szedlak-Stinean, R.-E. Precup and R.-C. Roman (2022a). Linear and nonlinear observers developed for direct
current electric drive systems, 9th International Conference on Computers Communications and Control (Iccce
2022), Baile Felix, Romania, pp. 1-14.

C.-A. Bojan-Dragos, R.-E. Precup, E. M. Petriu, R.-C. Roman, E.-L. Hedrea and A.-l. Szedlak-Stinean. GWO-Based
Optimal Tuning of Controllers for Shape Memory Alloy Wire Actuators, 6th IFAC Conference on Intelligent
Control and Automation Sciences (ICONS 2022), Cluj-Napoca, Romania, pp. 39-44, 2022.

R.-E. Precup, E.-L. Hedrea, R.-C. Roman, E. M. Petriu, C.-A. Bojan-Dragos, A.-l. Szedlak-Stinean and F.-A. Paulescu
(2022a). AVOA-Based Tuning of Low-Cost Fuzzy Controllers for Tower Crane Systems, 2022 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE 2022), Padua, Italy, pp. 1-8.

R.-C. Roman, R.-E. Precup, S. Preitl, C.-A. Bojan-Dragos, A.-l. Szedlak-Stinean and E.-L. Hedrea (2022a). Data-Driven
Control Algorithms for Shape Memory Alloys, 6th IEEE Conference on Control Technology and Applications
(CCTA 2022), Trieste, Italy, pp. 1306-1312.

R.-E. Precup, E.-L. Hedrea, R.-C. Roman, E. M. Petriu, C.-A. Bojan-Dragos, A.-l. Szedlak-Stinean and C. Hedrea (2022h).
Evolving Fuzzy and Tensor Product-based Models for Tower Crane Systems, IEEE 48" Annual Conference of the
Industrial Electronics Society (IECON 2022), Brussels, Belgium, pp. 1-6.

E.-L. Hedrea, R.-E. Precup, R.-C. Roman, C.-A. Bojan-Dragos, A.-l. Szedlak-Stinean and C. Hedrea. Tensor Product-
based and State Feedback Structures for Level Control of Vertical Three Tank Systems, 26'™ International
Conference on System Theory, Control and Computing (ICSTCC 2022), Sinaia, Romania, pp. 1-6, 2022.

R.-C. Roman, R.-E. Precup, S. Preitl, A.-l. Szedlak-Stinean, C.-A. Bojan-Dragos, E.-L. Hedrea and E. M. Petriu (2022b).
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of Complex Systems (COSY 2022), Bologna, Italy, pp. 1-6.

A.-l. Szedlak-Stinean, R.-E. Precup, R.-C. Roman, E. M. Petriu, C.-A. Bojan-Dragos and E.-L. Hedrea (2022c). Discrete-
time Linear and Nonlinear Observers for an Electromechanical Plant with State Feedback Control, IEEE
Symposium Series on Computational Intelligence (IEEE SSCI 2022), Singapore, Singapore, pp. 1-8.

C. -B. Gale-Cazan, C.-A. Bojan-Dragos, R.-E. Precup, R.-C. Roman, E. M. Petriu and A.-l. Szedlak-Stinean. GWO-based
Modeling of an Unstable Transport System, 9th International Conference on Information Technology and
Quantitative Management (ITQM 2022), China, pp. 1-8 (online).

e Papers written in 2019 but published in 2020

R.-C. David, R.-E. Precup, S. Preitl, E. M. Petriu, A.-l. Szedlak-Stinean and R.-C. Roman. Whale Optimization Algorithm-
Based Tuning of Low-Cost Fuzzy Controllers with Reduced Parametric Sensitivity, Proceedings of 28th
Mediterranean Conference on Control and Automation MED 2020, Saint-Raphael, France, pp. 440-445, 2020.

R.-E. Precup, E.-l. Voisan, E. M. Petriu, M. L. Tomescu, R.-C. David, A.-l. Szedlak-Stinean and R.-C. Roman. Grey Wolf
Optimizer-Based Approaches to Path Planning and Fuzzy Logic-based Tracking Control for Mobile Robots,
International Journal of Computers Communications & Control (Agora University Editing House - CCC
Publications), vol. 15, no. 3, 3844, pp. 1-17, 2020, impact factor (IF) = 2.293, IF according to 2020 Journal Citation
Reports (JCR) released by Clarivate Analytics in 2021 = 2.293 (univagora.ro/jour/).
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