Intermediate scientific report of the contract PN-III-PI-1.1-PD-2016-0331
regarding the implementation of the project during december 2021

A. Overall summary of the project

The research team and the roles of the members who carried out research activities within
the project "Nonlinear observers-based control structures applied to mechatronics systems”,
financing contract no. 1064/10.10.2018, with the deposit code PN-II-PI-1.1-PD-2016-0331,
https://szedlak-stinean.wixsite.com/nobsmecs, is the one nominated in the funding application: Lect.
Dr. Ing. Alexandra-lulia Szedlak-Stinean. the project leader and Prof. Dr. Ing. Radu-Emil Precup. the
mentor.

Due to the suspension of the project starting from 01.10.2019 and until 30.11.2021. the
reason for the interruption being the entry into maternity leave and then the entry into child-raising
leave. the main objective pursued during the contract for the month of December 2021 was the
same as in Stage 1 — The development of the theoretical framework which allows the
implementation of the modern control solutions. then following that this knowledge will help to
implement, test, verify and validate the solutions developed through simulations and through
experiments. in other words the development of activities related to Stages 2, 6 and 7. To achieve
the objective, the following activities were carried out:

[.1. Obtaining current theoretical knowledge regarding observers. To accomplish this
activity the analysis of current theoretical research — state-of-the-art on theoretical research — and
the possibilities of improving modern control solutions were considered. Details are presented in the
study from section B.

1.2, Studying the practical applications of various types of observers. To accomplish this
activity, the realization and classification of observers was studied with focus on mechatronic
systems. Details are also presented in the study from section B.

For the year 2021, more precisely for the month of december, the present intermediate
scientific report (research report) is the only deliverable of the project.

Remarks:

[. The bibliographic study related to section B is presented at the end of the intermediate
scientific report, more precisely in section C.

2. In this research report. annotations in english may appear in this. Each time. however, the
necessary clarifications are made to make the interpretations as clear as possible.

3. The results obtained are also mentioned on the project web page, https://s

stinean.wixsite.com/nobsmecs. where all the information related to the project will be included.

B. The development of the theoretical framework which allows the implementation of
the modern control solutions. Study on acquiring current theoretical knowledge
regarding observers and analyzing the practical applications of various types of
observers

The research conducted during 2010-2021 concerns the analysis, synthesis and modeling of
mechatronics systems based on electric drives. Modern control solutions are reviewed and
developed dedicated towards controlling the speed and position of electric drives with variable
parameters. The control strategies of servo-systems should provide very good dynamic performance
and steady-state conditions for the developed control systems. In this sense, the main research was
oriented towards the development of new control solutions dedicated to speed and position control
of three mechatronics applications:

I. The electric drive system which wraps a strip with constant linear velocity on a drum -
electric drive system with variable parameters.



2. The electric drive system with time-varying inputs with a brushless motor.
3. The laboratory equipment - Model 220 Industrial Plant Emulator.

Mechatronics systems have experienced a rapid and complex multidisciplinary development
as a result of advances in various application areas such as (Bishop. 2007: Gutiérrez-Carvajal et al.,
2016: Isermann. 2005): expert systems, automotive engineering, robotics and automation. systems
structural dynamics, control systems, servomechanics. numerical computing systems based on
highly integrated microelectronics, consumer products, medical imaging systems. mobile
applications, integrated and computer-aided manufacturing systems, transportation systems and
vehicles. Mechatronics systems are successfully used in many industrial and non-industrial
applications because of their simple and robust structure. By constantly evolving, these systems
exhibit increasing performance ensuring functional and applicative versatility, intelligence and
flexibility. These features are also provided by the control system which has to be able to adapt to
external conditions at all times and to provide the necessary informations to the hierarchical control
(Isermann, 2005: Koch et al., 2006; Hehenberger et al., 2006: Pabst, 2006; Bishop, 2007: Dragos,
2011). Mechatronic applications incorporate:

e Mechanical subsystem (the controlled process):
e Electronic interface subsystems (the execution and measuring elements):
e Control subsystem.

The degree of complexity of the structure and of the control subsystem of a mechatronic
application differs from one application to another and may include relatively simple and advanced
control structures. The following points of view may be considered in the development of
mechatronic applications (Dragos, 2011):

e accepting a simplified system representation:
establishing the operating performance;
control of specific measurements. including state estimation:
generating dynamic behavior in special situations;
development of advanced algorithms:
detecting and diagnosing operating errors.
The design of control systems is important because of the very good performance
specifications imposed in various fields. The specifications become more restrictive if’ several
operating conditions of the processes are involved as the variable parameters (for example. in the
case of speed and position control besides the variable moment of inertia situations, the variable
reference input, correlated with various particular operating conditions, additional operating
conditions may occur, such as oscillations that apear on the mechanical side). These problems can
be solved in two ways: by developing advanced nonlinear models or by implementing a robust
control based on state observers technique. The implementation of the second solution in servo-
systems leads to high system performances. In this context. the development of advanced control
solutions is a relatively difficult problem which requires a detailed preliminary study of the process.
particularly the parameters variability and of its structural properties. As a continuation of previous
research, in this project (PD 164/10.10.2018) the approach oriented on the analysis. synthesis,
modeling and development of modern control solutions. such as nonlinear observers dedicated to
certain mechatronics applications is proposed. Two types of observers can be used: linear and
nonlinear. From the category of linear observers, the most common are full-order observers
known as the Luenberger type observers and reduced-order observers. Among the nonlinear ones
we mention: Kalman-extended filters. sliding mode observers, fuzzy and neural network
observers (Luenberger, 1966; Ackermann, 1972; Friedland, 1996; Gajic si Lelic, 1996; Stefani et
al., 2002: Preitl et al., 2009).



B1. Control structures based on linear observers intended for mechatronic
applications.

The topic of designing observers for linear systems was proposed and solved for the first
time by Luenberger (Luenberger, 1966). The linear observers that are discussed in this subchapter
are implemented on two mechatronic applications: 1. the electric drive system with time-varying
inputs with BLDC motor and 2. the laboratory equipment — Model 220 Industrial Plant Emulator.
First time. the observers applied to the electric drive system with time-varying inputs with BLDC
motor will be shown and will be presented in sections B1.1, BI1.2, B1.3 and B1.4, followed by the
observers applied to the laboratory equipment which will be presented in section B1.5.

[ Electric drive system with time-varyvine inputs with BLDC motor

The electric drive systems with Brushless Direct Current (BLDC) motors (BLDC drives)
have experienced a fast and complex multidisciplinary development as a result of advances in
various fields such as (Yedamale, 2003: Hansson, 2004: Baldursson, 2005; Nasar and Boldea,
2005): power electronics. modern automated control techniques, powering electric vehicles (e.g..
cars, electric bicycles, electric scooters), numerical computing systems based on microelectronics
with a high degree of integration, industrial automation, medical equipments and robotic
instrumentation (e.g.. improving sleep for apnea suffers. providing mobile breathing assistance,
preventing blood clots in hospitalized patients), etc. In control applications which involve electric
drives, it is often necessary to estimate derivatives of measurable states. for example, estimating the
speed () and acceleration (&) from position information (€,). which is why in this subchapter four
design approaches are proposed and developed: (1) an observer of m™ order derivatives with the
filtration technique (OFT), (2) an extended Luenberger state observer with 8, and M, as inputs
(ELSO+Me), (3) an extended Luenberger state observer having only the 6,, as input (ELSO-Me),
and (4) a Kalman filter observer (KFO).

The mathematical model (MM) of the three-phase BLDC motor is of the fourth order,
having as states variables iy, is. Ou $1 . In this context, the process dynamics can be divided into
two subsystems: the electromagnetic subsystem (ES) and the mechanical subsystem (MS). The
dynamic equations associated with the two subsystems in state-space form are:
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where xgs=[i, is]" (here, T represents matrix transposition) are the states of the ES and xas=[6n
mn]" are the states of the MS. The four design approaches presented below will only use the

dynamic model corresponding to the MS.
B1.1. Observer of m" Order Derivatives with Filtration Technigue (OTF)

The ideal m™ order derivative is characterized by a pure anticipatory dynamic, so it is not
practically achievable. A possible solution is to use an 7" order low-pass filter for the measured 6.
connected in series with a pure derivation operator, respecting the constraint m=n. The values m = 2
and n = 3 are set due to the fact that d&°0,,/dr" =dw./di=¢, where ¢ represents the acceleration. Using
the substitution x=/x; x; x3/'=[0y o ] the observable canonical form used in the observer



structure in Fig. B1.1 is:
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Naming this structure an observer is justified due to the fact that Fig. BI.l shows a
correction based on the output estimation error, although for the estimation using the filtering
technique this idea was not the starting point. It is expected that the dynamic response of the
estimate is slower because through the coefficient an there is only one direct correction term based
on the position error. The terms «; and a2 appear as state feedbacks and not the estimation error.
The observer design uses the pole placement method. For the imposed poles (real negative ones) Pq
= {p1. p2, p3} the observer coefficients are:
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Fig. B1.1. OTF block diagram.

B1.2. Extended Luenberger State Observer with 6, and M, as Inputs (ELSO+Me)

A solution to compute the state estimates @, ¢ and M, is to use an extended Luenberger

state observer (ELSO) having as predictive correction term the mechanical position error,
AB=@, -6, and as direct input the electromagnetic torque, M. For Miog an exogenous model of
step signal class is used. In this particular case of ELLSO, the state-space equations are (Luenberger,
19606; Andreescu, 1999):
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where x = [On @m Mroaa)” and the parameters /;. /> and /; of the observer gain are calculated using
the pole placement method, knowing that the pair (A.C) is observable. The ELSO+Me structure is
presented in Fig. B1.2 and the observer parameters are:
L ==p+p,+p,=BlJy -
| | 2 3 BLiX (BI22)
L=ppstpps+pops = (Bl yu) =Ty pipas
The observer coefficients depend as expected on the MS parameters (especially on Jsipc).



These coefficients determine the dynamics of the observer convergence speed. The idea of using all
physical states as observer inputs leads to an observer with improved performance with minimal
dynamic delays.
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Fig. B1.2. ELSO+M¢block diagram.

B1.3. Extended Luenberger State Observer with 6, as Input (ELSO-Me)

Another solution to compute the estimates @ and ¢ is to use an ELSO considering only the
mechanical position error term, without any other input. The motion model is chosen with & =
const, a case commonly encountered in constant acceleration with constant electromagnetic torque
and in constant steady-state motion regimes. For this case of ELSO-M,, (here, x = [0 wi &]) the
state-space equations are (Luenberger, 1966: Andreescu. 1999):
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The ELSO-Me block diagram is illustrated in Fig. B1.3. The observer compensator design L
= [l 1> [3]"is also done with the pole placement method and the observer parameters are:

Li==pi+pstpydy=pps+pp+paply==pp.p. (B1.3.2)
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Fig. B1.3. ELSO-M. block diagram.

Bl.A4. Kalman Filier Observer (K1)
KFO refers to a probabilistic estimation approach and is the most well-known and
commonly used observer for linear systems. Although the KFO in the case of highly nonlinear
processes becomes unstable and has severe limitations, when employed for linear processes



provides an efficient approach for estimating the states and thus it also minimizes the mean square
error (MSE). Even if an accurate model of the considered system is unknown the filter supports the
estimation of past. present and future states (Brown si Hwang, 1996; Lendek et al., 2008;
Habibullah si Lu, 2015). As well as the other observers discussed above, KFO will also use the
dynamic model corresponding to the MS (here, with C=[1 0] and D=0). The dynamical state-space
model can be written as:

x=Ax+Bu+Gw,

: (B1.4.1)

v=Cx+Du+H w+v,
where the parameters for matrices A and B are obtained using (BI.L1), u —the (deterministic) input,
w — the white process noise and v — the white measurement noise. Knowing that £ (w) = E (v) = (),
E (ww') = O (Q — process noise covariance), £ (vww') = R (R — measurement noise covariance) and £
(') = N, we can construct a state estimate x that minimizes the steady-state error covariance
according to:

P =lim Elfx—zHx-x}' ) (B1.4.2)

In this context. the equations of optimal Kalman filter-based solution are:
Xx=Ax+Bu+L(y—Cx—=Du).
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By solving an algebraic Riceati equation we can determine the filter gain L according to:
L =
L=(PC"+N)R , (B1.4.4)
where R= R+ HN+ N'H' + HOH' and N =G(QH" + N). The KFO block diagram is presented
in Fig. B1.4.
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Fig. B1.4. KFO block diagram.

11 The laboratory equipment — Model 220 Industrial Plant Emulator

The development of suitable algorithms to perform the estimation has been the focus of
many researchers’ attention and for this purpose, in order to estimate state variables from the
available measurements, several techniques have been developed and introduced (Brown and
Hwang, 1996; Aghannan and Rouchon, 2003: Marx et al., 2007: Lendek et al., 2008: Spurgeon,
2008; Magnis and Petit, 2016). In this context, the paper proposes a controller that can be
considered as composed of three subsystems: a subsystem that provides the desired output and from
the reference value a feed-forward signal. an observer and a feedback derived from the estimated
states. The interesting structure of the controller allows it to be applied for a wide range of design
methods. The controller structure and the forms of the equations are exactly the same for systems
with one input and one output as well as for systems with multiple inputs and outputs. The same
controller structure can be obtained by employing many other design techniques. The defining
feature of a state feedback controller and an observer have is the complexity of the controlled



system that determines controller’s complexity. As such a system model is actually contained by the
controller. Thereby the internal model principle that prescribes that an internal model of the
controlled system should be contained in the controller is in this paper exemplified. The laboratory
application considered in this subchapter is a complex, nonlinear equipment, ideal for studying
automatic control solutions dedicated to the control of modern industrial equipment, such as:
transmission shafts, conveyors, rotary tables, machine tools and machines of automated assembly
(ECP, 2010: Szedlak-Stinean et al.. 2016; Szedlak-Stinean et al., 2017).

Rigid drive dynamics
The first principle equations that describe the system in case of rigid drive dynamics are
(ECP. 2010; Szedlak-Stinean et al.. 2016):
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The state-space MM of Model 220 Industrial Plant Emulator with rigid drive dynamics is:
21 [0 1 . 0
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v=[ 0x, x,1.
where 7) is the drive torque (Tp=u), x=/x; x>/" = [0 dd,/di]" is the state vector and y is the output.
Considering zero initial conditions, the application of the Laplace transform leads to the following
transfer function (t.f.):

(BI1.I1.2)

& (v (S, +J, | g:)
e = ach i (B1.I1.3)

Ty) sl (e +eng ™) +d,87 4,

Flexible drive dynamics
The first principle equations that describe the system in case of flexible drive dynamics are
(ECP. 2010; Szedlak-Stinean et al.. 2016):
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The state-space MM of Model 220 Industrial Plant Emulator with flexible drive dynamics is:
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v=[1 0 0 Olx, x, ¥, x,].
where Tp is the drive torque (Tp=u. u is the input). x=[x1 x2x3 x4 =[0; dO/dt 0> dO>dr]" is the state
vector and v is the output. The following t.I. is attached to (B1.IL.5):
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B1.3. State feedback and observer-based coniroller design

In cases where the process states are not accessible for measurements or are only partially
accessible for measurements and if the process is observable, then it is possible to estimate its
states. For this purpose, state estimators or state observers are utilized. The observability test of the
linearized state-space MMs can be done using the matrix:

Q, =[C" C'4 C'A* C'A° C'A'L]. (B1.5.1)

The starting point in order to specify the relations that describe the functioning of a state
observer. is the state-space MM corresponding to the process, assumed known, with the form:
X=Ax+Bu,
i (B1.5.2)
y=Cx
The variable that is the target of the control process is the output. Firstly. all components of
the state vector are assumed as measured. The feedback is constrained to be linear, so it can be
considered as (Astrom and Murray, 2009):
— 4 4 . g
u=-Kx+K,.1 (B1.5.3)

where 7 is the reference input, Ky is the feed-forward gain and K is the state feedback gain matrix.
To calculate the state feedback gain matrix K, the pole placement method is applied. The closed-
loop system obtained when the feedback (B1.5.3) is applied to the system (B1.5.2) is given by:
* ={A~BKx+BX, . (B1.5.4)
The state-space MM corresponding to the state observer has the same structure as the
process (B1.5.2) and is completed with a correction relation based on the output error y=yv-7.
Consequently, the MM is rewritten in the form (Astrém and Murray, 2009):
{=AX+Bu+L(y-CX)=(A-LOX+Bu+Ly,

i=Cx.

(B1.5.5)

where L is the observer gain.

In order to analyze the observer, the state estimation error is defined as X=x-X.
Differentiating and replacing the expressions of x and X leads to ¥ =(4-LO)x . The error X will
go to zero if the matrix L is chosen such that the matrix has eigenvalues / poles with negative real
parts. The appropriate selection of the eigenvalues / poles determines the convergence rate (Astrom
and Murray. 2009). Taking this into account, the design of the state observer involves solving a
poles placement problem and also calculating the parameters of the observer gain. The starting



point in designing the state observer is the expression of the characteristic polynomial:
A (8)=det(s1-A+LCO)=s"+a
By allocating the poles of the observer. the characteristic polynomial Aus(s) is expressed as:

" " g gl 3 =1 =
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Because both the system (B1.5.2) and the observer (B1.5.5) have the same order #, the order

of the closed loop system is 2n. In order to obtain the state feedback observer, the design of the
observer as well as the design of the state feedback can be realized separately. The closed-loop
system is defined as:

x] [A-BK BK Tx] [BK,,
L |= L] (B1.5.8)
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Due to the fact that the matrix on the right side is block diagonal. the characteristic
polvnomial of the closed-loop system has the form:
A (s)=det(sI-A+BK)det(s1-A+LC). (B1.5.9)

This property is called the separation principle (Astrom and Murray. 2009). A schematic
diagram of the controller is illustrated in Fig. B1.5. It can be observed that the controller includes a
dynamic model of the plant, thus respecting the internal model principle. It can also be noticed that
the observer determines the dynamics of the controller. As such, the controller can be regarded as a
dynamical system having v as input and u as output:

x=(A-BK-LCO)X+L y,

e tras+a,. (B1.5.6
] 0
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C (B1.5.10)
u=—-Kx+K, r.
The t.f. of the controller has the form:
H (s)=K[s1-A+BK+LC]'L, (B1.5.11)
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Fig. B1.5. Schematic diagram of an observer-based controller.



B2. Control structures based on nonlinear observers intended for mechatronic
applications.

One of the fundamental problems specific to control systems, of designing observers for
nonlinear control systems, was first proposed by Thau (1973). A state constructor (Dorf si Bishop.
2003: Preitl si Precup. 2008; Preitl et al., 2009) is a system having as input the inputs and outputs of
the real process. and as output an estimate of the state of this process. In the hypothesis of linearity
of the process model, the basic structure of the estimator is always the same, but its realization will
depend on the chosen context: continuous or discreet, deterministic or stochastic. If the model is
deterministic, the state constructor will be called an observer (or estimator). If the model is a
stochastic type. then the constructor will be called a filter. The estimation problem requires the
construction, for a deterministic model of the process. of a system defined by its state equation, for
which the output provides an estimate of the real state of the process. This estimate implies an error
that must tend to zero: when this property is satisfied. the estimator or observer is called asymptotic
(Dorf and Bishop, 2005: Preitl and Precup, 2008: Preitl et al.. 2009). An observer is very useful for
implementing feedback stabilization or feedback regulation of nonlinear control systems due to the
fact that it is essentially an estimator for the state of the system. The states estimation problem is of
important strategic significance for the process of controlling and monitoring of many technological
processes. In order to control and optimize a process, knowing some physical state variables
provides useful information. This is the case of many widely diffused process control strategies.
Therefore by including an appropriate state estimator, the difficulty caused by the presence of
unknown states can be solved. For this reason, the development of suitable algorithms to perform
the estimation has been the focus of many researchers attention and for this purpose, in order to
estimate state variables from the available measurements, several techniques have been developed
and introduced. Over the past three decades there has been significant research done on the
nonlinear observer design problem. Depending on the mathematical structure of the process model,
there is a wide variety of possible estimators that can be used (Soroush, 1997: Mouyon. 1997;
Garcia et al., 2000; Aghannan si Rouchon, 2003: Kinsey and Whitcomb, 2007: Ghanes ct al.. 2013;
Magnis and Petit, 2016).

B2.1. Extended Kalman filter (EKF)

The filtering process aims to determine the estimation of system variables when the
environment in which the process takes place presents random perturbations. Two points of view
can be used to address this issue: the first one is Wiener's who uses the frequency description and
the second one is Kalman's using the temporal description. In both cases, an optimal system (filter)
is determined in order to minimize the error variation between the real variable and its estimation
(Wiener, 1949; Boulfelfel et al., 1994; Brown and Hwang. 1996). The probabilistic estimation
method that is the most well-known and commonly used for linear systems is the Kalman filter
(KF) and for the nonlinear systems its extension, the Extended Kalman Filter (EKF). The EKF
among other nonlinear ones based on linearization techniques is one of the most widely diffused
observers. Because of the fact that the noise model is often unknown and it can only be assumed.
wrong noise assumptions can lead to biased or even divergent estimates. The purpose of the
observer is to process these measurements and any available informations regarding the initial state
of the system and to offer an estimate of the current state of the system. The obtained estimation
should improve with additional measurements and, ideally, in the absence of noise, it should
converge to the true state value. In estimation theory, EKF is the nonlinear version of the KF that
approximately linearizes an estimate of the current mean and covariance. In the case of well-defined
transition models. EKF has been considered (Julier and Uhlmann, 2004: Extended Kalman Filter.
2021) a relevant standard in nonlinear state estimation theory. GPS and navigation systems. In
terms of EKF, the transition and observation models don't need to be linear functions of the state.
but can instead be differentiable functions.



Xp = TNt ) W (B2.1.1)
2, = h(x,)+v,.

where wy and vy are the process and observation (measurement) noises, which are both assumed to
be zero-mean multivariate Gaussian noises with covariance Qr and Ry respectively. and w; is the
control vector. The function f can be used to calculate the predicted state from the previous
estimate. and similarly the function / can be used to calculate the predicted measurement from the
predicted state. However, fand 4 cannot be applied directly to the covariance, instead a matrix of
partial derivatives is calculated. At each step, the Jacobian is evaluated with the current predicted
states. These matrices can be used in the Kalman filter equations. This process essentially linearizes
the nonlinear function around the current estimate (Extended Kalman Filter, 2021).

Discrete-time predict and update equations

Predict
e Predict state estimate '%ﬁlk—l = fi{%,_ 1““_].:1,() (B2.1.2)
e Predicted covariance estimate Py = Fli F+O (B2.1.3)

Update

e Innovation or measurement residual YV, =5 —h(.{'w‘_}) (B2.1.4)
e Innovation (or residual) covariance 8. =H; }’A_Ik_li-ii’A7 +R, (B2.1.5)
e Near-optimal Kalman gain K, = W,_,lH:'Sﬁ (B2.1.6)
o Updated state estimate 'i:f'ik =Xyt K,y (B2.1.7)
e Updated covariance estimate )W = (] =K, HA_)]:]R_] (B2.1.8)

where the state transition and observation matrices are defined as:
B of o= coh
= ax "";-1|:- b kT 5,\‘ 3 1

Continuous-time EKF: unlike the discrete-time EKF, the prediction and update steps are coupled in
continuous-time EKF.

r (B2.1.9)

Model
x(0) = fx(0),u() +w(t),  wll)~ N(0.0(1)) (BL110)
(1) = h(x(@)+v(0).  v(t)~ N(O.R(1))
Initialize
5(1,) = Elx(,)) Py = Varlx(,)) (B2.1.11)
Predict-Update
X(1) = F(EOu)+ K(@)(=() = h(x(1))
P(ry = F(O)PW)+ POF () = KO H(OP()+0(1)
K(t)y=P(OH() R(t)” (B2.1.12)
F() = %| I (GE 9ﬁ|{

Discrete-time _measurements: most physical systems are represented as continuous-time models,




while measurements are represented in discrete-time.

Model
W) = Fx@O.u@)+w(r),  wlr) -~ N (0. O(¢
(1= f(x(n).u(1)) (),-- v(1) ~ N(0.0(1)) (B2.1.13)
z, = h(x )+, v~ N R,)
where x=x(1k).
Initialize
%yo = Elx()} Py = Elx(r,) = 5,)t,) - £(1,)) | (B2.1.14)
Predict
(1) = fE0).u (o) = X -
solve [\.m SEOl)) with [ e (B2.1.15)
)= Fopm+ POF@ +0@0) PG =P
where F(1) = %l*”) T
Update
K, = PA[fMHI{ (HAPHMHA{ + Rk)—l
"{'f.pc = Xyt K, (z, "h(:\;kp_l)) (B2.1.16)
),:'11.- =(I-K,H,) Rﬂ]f.'w!
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Fig. B2.1. EKF block diagram.

The advantage of using EKF is the lack of stationary error at low speeds. The disadvantage
of the method arises from the complexity and large volume of computing, for the implementation
the use of processors with high computing power being necessary. Another drawback is the need to
fully know the noise sources in the system in order to determine the covariance matrices. For most
applications the EFK is still the approach that is more practical and offers the most robustness
(Brown and Hwang, 1996: Simon, 2006; Biagiola and Solsona. 2006; Lendek et al., 2008: Beyhan
et al., 2013: Habibullah and Lu, 2015).

B2.2. Takagi-Sugeno fuzzy observers ( TSFO)

The estimation of states and of the possible uncertain parameters, based on a dynamic
system model and a sequence of noisy measurements, is required by a wide range of problems in
decision making, control, and monitoring. The design of an observer for a nonlinear system requires
the description of the system in a state-space form. There is no generic method yet developed for



the design of an observer valid for all nonlinear system types. From this point of view fuzzy control
is more pragmatic due to the specific decision-making mode in the command development. To this
end. a rather qualitative linguistic characterization of the situation in which the process evolves and
of the intervention decision is developed: this decision is then transposed into an adequate
quantitative intervention (Preitl si Precup. 2008: Preitl et al.. 2009). Any nonlinear system can be
approximated on a compact set with an arbitrary accuracy by the generic nonlinear state-space
model that is provided by Takagi-Sugeno (TS) fuzzy systems (Takagi and Sugeno, 1985). The
interest of using the approach based on the representation of nonlinear systems through TS models
(Takagi and Sugeno, 1985: Taniguchi et al., 2001; Tanaka and Wang, 2001) is build on the fact that
once the TS fuzzy models are obtained, some analysis and design tools developed in the theory of
linear systems (Huang, 2005: Lee et al.,, 2013; Li et al., 2014) which facilitates the observation
and/or synthesis of the controller for complex nonlinear systems can be used. However. many
papers have been done in order to investigate the problem of nonlinear observers’ synthesis and its
application to the dynamic systems described by fuzzy TS systems. In particular, in (Tanaka et al..
1998, Tanaka and Wang, 2001, Bergsten et al., 2002, [chalal et al., 2007, Lendek et al., 2010). the
problem of the TS fuzzy observer for explicit dynamic models in continuous-time and in discrete-
time has been addressed. In implicit cases. there are more continuous-time papers (Taniguchi et al.,
2000. Marx et al., 2007. 1lhem et al.. 2012; Essabre et al.. 2014, Soulami et al., 2015) than for
discrete-time (Wang et al., 2012; Estrada-Manzo et al., 20 [4).

The analysis and design for a general nonlinear system represented by a fuzzy model
becomes much easier due to the fact that there are well-established methods and algorithms that can
be used to design fuzzy observers. For TS fuzzy systems there have been several types of observers
developed, such as Thau-Luenberger observers ( Beyhan et al., 2013: Tanaka et al.. 1998), reduced
order observers (Beyhan et al., 2013; Bergsten et al.. 2002) and sliding mode observers (Beyhan et
al.. 2013; Palm si Bergsten, 2000). The observers design methods generally lead to a linear matrix
inequalities (LMIs) feasibility problem. The stability analysis for a large number of rules eventually
becomes unsolvable due to the fact that the system complexity grows exponentially with the
number of antecedents (Lam et al., 2013). By employing observers, the non-measurable states can
be estimated, analyzed. and used for the control of nonlinear systems.

In order to develop a TSFO it is required to have a TS fuzzy model of the nonlinear system
subjected to observation. Thus, in this approach, an essential step is the development of a fuzzy
model. Generally there are two ways for obtaining fuzzy models, 1. and 2.:

| Identification (fuzzy modeling) utilizing input-output data, and
2. Derivation from known equations of the nonlinear system.

Using the sector nonlinearity approach ((Kawamoto et al.. 1992; Johansen et al., 2000:
Mehran, 2008)) is a popular way of obtaining the TS fuzzy models. This approach for the
development of fuzzy models was first mentioned in (Kawamoto et al.. 1992). and it is based on the
following strategy. Considering a simple first order system x= f(x(r)), with f{0)=0. the goal is
finding a global sector that fulfills the condition X = f(x(1)) € [a, a, |x(1) . Following this approach
ensures the construction of an exact fuzzy model. Due to the fact that it is at times challenging to
find a global sector for nonlinear systems. local sector nonlinearity can be taken into consideration.
This is a valid approach given the fact that the variables of real-world systems are always bounded.
1S fuzzy models

Model rule 7

JF () is M, and...and z,1) is M,,

¥() = Ax(@)+ Bu(r). i=12....r (B2.2.1)
ylty=C x{1), = L2
where: M, is the fuzzy sets, r is the number of model rules, x(7) is the state vector. (1) is the input

THEN



vector, y(7) is the output vector. A; is the square state or system matrices and zi(1), ... Zp(l) are
premise (scheduling) variables. Each linear equation represented by the relation Awx(1) + Buu(1) is
labeled as subsystem. Taking into consideration a pair of (x(1). u(1)), the final outputs of the TS
fuzzy model are given in the following relations (Mehran, 2008):

" (z(ORA,X() + Bu(r) ,
f = > WA x()+ Bu()} =5 B (z(0)|Ax(0) + Bu(t)}

Zi_l w (z(1))

5 (B2.2.2)
w,(z(1)C x(1) , _
W === N =Y h(OX ()
> )
2() = |z, (02,02, (1)}
»
in which for all f we have W, (z(1)) = 1—[ M, (z, (1), (B2.2.3)
sl
z0)) = o E )
> ()
Since [Z:‘._IW,(:(!)) >0, (B2.2.4)
lwepzo.  i=l2er
we will have for all 1 [ "“'h’(:(’)) = (B2.2.5)
h(z() =0, i=12,....r

TSFO observer desien

The conditions that must be fulfilled for the design of the TSFO are in fact stability
conditions to guarantee the stability of the autonomous dynamic systems. The basic stability
conditions for an autonomous TS fuzzy system are given in Theorem | and Theorem 2 (Beyhan et
al., 2013).

Theorem I+ (Tanaka et al.. 1998) The equilibrium point x=0 of the continuous-time TS fuzzy model

described by ¥ =Y h(z(1)A4 x(1) is asymptotically stable, if there exists a positive definite
matrix P =P’ so that for i=1.2,...r the following relation is valid:
A'P+P4, <0 (B2.2.6)
The TSFO is described using:
¥ =2 (A + Bult)+ L (y(0) - O
W)=Y ()X,

where L. i=1.2...r are the observer gain parameters. The pairs (4.C:)) are assumed to be
observable. The goal of the observer is to ostimate the states of the model (B2.2.2). which is
achieved if the error dynamics ¢ = X —x is asymptotically stable. The error dynamics can be written
as (Beyhan et al.. 2013):

& p r I

e=Y 3 RGO A, - LC e (B2.2.8)
The error dynamics of the TSFO in (B2.2.8) can be designed with a desired convergence rate @ = 0

using Theorem 2.
Theorem 2: (Tanaka et al.. 1998) The proper convergence rate of the error dynamics (B2.2.8) s

B22.7)



at least a. if there exists a positive definite matrix P = P . Li, i=1,2..r so that (Beyhan et al..
2013):

FP(A - LCHY+2aP <0,

(G, +G;)+daP <0,

for all pairs (i, j). i=1. 2,..r. j=1. 2...r which there exists z(1) such that incat hi(z(1))hy(z(1))#0. 3
denotes the Hermitian matrix, and is defined as #(A)= A+ A’ .

(B2.2.9)

B2.3. Sliding mode observers (SMQO)

Variable Structure Systems (VSS) are one of the most promising techniques for controlling
electrical drives, due to good robustness and performance in case of parametric variations, of
perturbations and load variations. respectively due to the compensation of the nonlinearities of the
controlled process and their simple implementation. The primary feature that distinguishes the
sliding mode systems as an independent class of automatic control systems is the fact that during
transient processes the system structure changes. In VSS theory, the most attention is paid to
systems with sliding modes. They are based on a specific type of control law that causes a s/iding
mode control or sliding mode regime in the system. Sliding mode observers use the remarkable
VSS properties and are successfully integrated into servo-systems. These observers use the
equivalent command to estimate the equivalent disturbance. In general, their structures are closely
related to the mathematical models used in the controlled process (Spurgeon, 2008: Mercorelli,
2015: Apaza-Perez et al.. 2016). These have the ability to minimize the error between the measured
process output and the output of the observer that ensures that the observer produces a set of state
estimates that are precisely proportional with the actual output of the process. The sliding mode
observer design method consists in determining a switching gain. One restriction is the fact that in
order to achieve the estimation. the outputs have to lic on specified sliding surface. In addition.
performance is rarely guaranteed, particularly when the outputs are corrupted with noise. Similarly
to a KF, the sliding mode observers have attractive noise resilience properties. In comparison to
linear observers, the principle advantage that the sliding-mode observers have is that they are
insensitive to the unknown inputs while in sliding, and additionally they can be utilized in order to
reconstruct unknown inputs which could be a combination of system disturbances. faults or
nonlinearities (Spurgeon. 2008: Mercorelli, 2015: Apaza-Perez et al., 2016).

The SMO approach consists of determining a switching variable (Spurgeon, 2008; Shtessel
et al., 2014). One constraint is the fact that in order to achieve the estimation, the outputs have to lie
on a specified sliding surface. For each individual process, the dimensions of the matrix are
AeR™ . Be R™ ,CeR™, p=m.with the matrices B and C of full rank. and the pair (A, C) is
observable. In order for the output to appear as component of a new state vector. it is convenient to
introduce a coordinate transformation, so, taking this into account we consider the change of

R nxin—p)

coordinates x > T.x. T. =[N/ (]’ where the submatrix N_ € spans the null space of C

and det(T ) # 0. By applying the change of coordinates x —> 7 .x, the matrices of the similar system
are:
4, 4, B
pArte|®r Ml ep U G 1) (B2.3.1)
: A4, Ay, B,

The canonical form for the nominal system can be rewritten as:
Xy = Ayx, + Ay + B,

B2.3.2)
y = Ay, X, + Ay, ¥ + By, (



where I x = [ns'1 )-']7 . In this context, the SMO proposed by Utkin is (Spurgeon, 2008; Shtessel et
al., 2014):
X = A %+ A.y+Bu+Lv,

) ) i (B2.3.3)
V=A% 4+ 4ny+ Bau—v,,

where (%.7) are the state and output cstimates, L& R" ™ is a gain matrix and
vo=Msgn(y, —y,) is adiscontinuous injection term with M € R, . The error dynamical system is:

e, =Ae +A,e, +Lv,, e =x —x,

é,.=Ae +Ape, —v,, e, =y—y. (B2.34)
An ideal sliding motion will take place on the surface S = {((el,eev):qy = 0§ and after some finite time
for all subsequent time ¢ =e¢ =0. The error system defined by (B2.3.4) gives the following
relation for the reduced order sliding motion:

e, =(4, + L4, )e, (B2.3.5)
which depending on L. represents a stable system. so ¢, — 0 and consequently x, — x,. The SMO
block diagram is given in Fig. B2.3.

Process
u x= Ax+ Bu Y
y=0Cx
T Ul e Pl
( Sian
E ¥=A%+Bu+Lv 3
3 u J¥=Ck '

Fig. B2.3. SMO block diagram.

Building upon the previously discussed state-of-the-art, the main objective of this proposal
is to develop the necessary tools, modern control solutions and theoretical framework for later
multi-purpose applications related to the observer-based control of mechatronics systems. The
control systems should benefit from the advantages of the continued analytical development and
implementation of dynamic model-based nonlinear observers that promise to improve the
performance of different types of mechatronics systems. The construction of nonlinear observers
still provides an open research field because advances in this area often face many obstacles, such
as, for example, the very restrictive conditions that have to be satisfied, uncertainty in the
performance and robustness and/or poor estimation results.

Modern control approaches as the EKF. TSFO and SMO are utilized to estimate states and
unknown variables in a nonlinear process in the eventual presence of disturbances or noise. Prior to
developing the observer’s equation. most researchers developed observers based on the
mathematical model of the systems and used the first principles model leading to the fact that
model-based approaches are employved by most observer designs. Although the observer gain and
its estimation error dynamics are also significant, the evaluation of an observer designs success is
based on its ability to estimate the difficult-to-measure states with acceptable convergence rates and
with approximately zero estimation errors. Determining the performance of the proposed observers
is done by comparing the actual values with those of the estimates. The validation of the proposed



control methods will be carried out in the first phase by means of numerical simulations, and later
by means of available laboratory equipment. Further development and improvement of the tuning
methods can be undertaken independently. The proposed nonlinear observers will be designed in
such a way that they can cope with the nonlinearities and the various restrictions imposed on the
arious quantities (variables) specific to automatic control systems.

The potential impact to the scientific field may be significant because through new
concepts and employed approaches. a new way for the use of highly advanced control designs in
mechatronics applications is open., which is very useful for implementing feedback stabilization or
feedback regulation of nonlinear control systems. It is clear that nonlinear observer design is still an
open area for research, efforts being made to broaden and adapt the proposed techniques in order to
widen the classes of nonlinear systems to which they may apply.

The potential impact of the project in the scientific, social, economic or cultural
environment is straightforward since the investigated topics can lead to automated tools for
controller design and tuning. Although there is a wide range of possibilities for creating new themes
for state-of-the-art research, noteworthy is also the impact in the socio-economic environment with
directly applicative directions. In the project all mechatronics applications tackled are
interdisciplinary and multidisciplinary themselves, with special focus on those applicable cost-
effective training systems in the fields of robotics, automation and process control.
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